Kategorien
Genetik Gesundheitsökonomie Neurowissenschaften Wissenschaft

Risikofreude zeigt sich im Gehirn

Riskante Verhaltensweisen wie Rauchen, Alkohol- und Drogenkonsum, zu schnelles Autofahren oder häufig wechselnde Sexualpartner ziehen enorme Konsequenzen nach sich.

Ein internationales Forschungsteam hat deshalb untersucht, welche genetischen Ausprägungen mit Risikoverhalten korrelieren und hat dazu genetische Informationen mit Gehirnscans von über 25000 Personen kombiniert, um Unterschiede in der Anatomie und Funktion von Gehirnarealen festzumachen.

Das Ergebnis: spezifische Ausprägungen zeigten sich in mehreren Hirnarealen: Im Hypothalamus, wo über die Ausschüttung von Hormonen wie Dopamin die vegetativen Funktionen des Körpers gesteuert werden, im Hippocampus, der für das Abspeichern von Erinnerungen wesentlich ist, im Dorsolateralen Präfrontalen Cortex, der ein wichtige Rolle bei Selbstkontrolle und kognitivem Abwägen spielt, in der Amygdala, die unter anderem die emotionale Reaktion auf Gefahren steuert, sowie im Ventralen Striatum, das bei der Verarbeitung von Belohnungen aktiv wird.

Überrascht war das Team von den anatomischen Unterschieden, die sie im Kleinhirn entdeckten. Dieses wird in Studien zu Risikoverhalten normalerweise nicht einbezogen da es hauptsächlich in feinmotorische Funktionen involviert ist. An dieser Hypothese kamen in den letzten Jahren jedoch Zweifel auf, die durch die aktuelle Studie neuen Auftrieb erhalten. „Es scheint, als würde das Kleinhirn in Entscheidungsprozessen wie dem Risikoverhalten eine wichtige Rolle spielen,“ so Gökhan Aydogan von der Universität Zürich: „Im Hirn von risikobereiteren Personen fanden wir weniger graue Substanz in diesen Arealen. Wie diese graue Substanz das Verhalten beeinflusst, muss allerdings noch untersucht werden.“ Weiterer Forschung bedarf es auch der Frage wie das Zusammenspiel von Umwelt und Genen unser Risikoverhalten beeinflusst.

Referenzen:
Universität Zürich, Universität Amsterdam, University of Pennsylvania
Genetic Underpinnings of Risky Behaviour Relate to Altered Neuroanatomy; Nature Human Behavior 2021; https://www.nature.com/articles/s41562-020-01027-y

#risikoverhalten #gehirn #gene #gehirnscans #vererbung #neurowissenschaften #neuroanatomie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Immunologie Infektiologie Psychiatrie Wissenschaft

Gehirn-Immunzellen können Depressionen verursachen

„Es gibt eine Gruppe von depressiven Menschen, die ein klinisch auffälliges Entzündungsprofil zeigt, ohne dass es dafür eine Erklärung gibt, wie etwa eine akute Infektion“, berichtet der österreichische Psychologe Michael Fritz. Bisher war nicht zu klären, ob die Entzündungsreaktionen als Ursache des depressiven Verhaltens in Frage kommen oder die Mikroglia (Immunzellen des Gehirns) als Folge der Depressionen aktiviert werden.

Seine Untersuchungen am Tiermodell, durchgeführt an der Linköping Universität in Schweden, ergaben nun, dass aktivierte Mikrogliazellen eine große Menge an Entzündungsbotenstoffen aussenden. Einer dieser Botenstoffe ist Interleukin-6. Dieser steigt laut Studien bei depressiven Patienten umso höher an, je stärker die Suizid-Intention ist. Neben Interleukin-6 schütten die aktivierten Mikrogliazellen auch das Hormon Prostaglandin E2 aus und reduzieren damit die Erregbarkeit der umliegenden Nervenzellen im Gehirn. Die Tiere zeigten daraufhin depressives Verhalten. Wenn die Forscher die Mikrogliazellen jedoch wieder hemmten, war dies nicht mehr der Fall.

Bei Menschen könnten die Mikroglia etwa durch virale Entzündungen, chronische Erkrankungen oder Krebs aktiviert werden, so Fritz: „Vor allem Infektionen, die eher mild verlaufen sind mit einer Manifestation von Depression im späteren Leben assoziiert.“ Dazu gehören etwa Infektionen mit Herpes-simplex-Viren, die Fieberblasen verursachen, Epstein-Barr-Viren, die Krebs auslösen können, und Feuchtblattern-Viren (Varizella-Zoster-Viren). Warum solche Infektionen bei manchen zu Depressionen führen, in der großen Mehrzahl der Menschen aber nicht, muss wissenschaftlich erst geklärt werden.

Referenz:
Linköping University; Nat Inst Drug Abuse, Baltimore; University of Barcelona
Pressemeldung Science APA 27.1.2021; https://science.apa.at/power-search/2251350191652050077
Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons; Immunity 2021, https://doi.org/10.1016/j.immuni.2020.12.016

#depression #gehirn #neurotransmitter #infektion #mikroglia #verhalten #viren #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Hämatologie Immunologie Molekulare Medizin Wissenschaft

Mit „Hemibodies“ gegen das Multiple Myelom

Eine der Hürden bei der Therapie des Multiplen Myeloms, einer bösartigen Erkrankung des Knochenmarks, ist die Unterscheidung zwischen den Tumor- und den gesunden Zellen des Körpers. Diese „Unschärfe“ kann bei der Behandlung von Patienten, die an dieser Krebserkrankung leiden, drastische Folgen haben: Es kann zu teils schweren, mitunter lebensbedrohlichen Nebenwirkungen kommen. Zur Lösung dieser Misere wurden Hemibodies entwickelt.

Diese Antigen-Fragmente sind sehr spezifisch und binden an bestimmten Oberflächenfragmenten von Tumorzellen. Das besondere Prinzip dieser neuen Immuntherapie besteht darin, dass sich ihre Wirkung erst dann entfaltet, wenn zwei Hemibodies auf der Oberfläche von Tumorzellen zu einer funktionalen Einheit zusammenfinden. In der Behandlung des multiplen Myeloms wurden zwei bestimmte Antigene (SLAMF7, CD38) als Zielmoleküle für die Hemibodies ausgewählt. Diese kommen beide häufig auf der Oberfläche von Myelom-Zellen vor. Jedes dieser „Targets“ für sich alleine genommen ist allerdings nicht sonderlich spezifisch, sie finden sich auf vielen Zellen des Körpers. In Kombination sind sie jedoch hochspezifisch für die Tumorzellen. Werden beide Antikörper-Fragmente injiziert, binden sie sich getrennt ans Zielmolekül, finden aber durch die räumliche Nachbarschaft zusammen. Erst dann sind sie in der Lage, T-Zellen festzuhalten und zu aktivieren, so dass Krebszellen gezielt zerstört werden können.

Sowohl im Reagenzglas als auch im Tiermodell zeigt sich, dass durch die neue Methode schwere Nebenwirkungen zuverlässig vermieden werden können, sagt Untersuchungsleiterin Maria Geis, Universität Würzburg. Mitautor Thomas Bumm ergänzt: „Unter dem Strich ist damit der Weg frei, Hemibodies zu einer effektiven und hochspezifischen Immuntherapie des Multiplen Myeloms weiterzuentwickeln.“

Referenzen:
Universität Würzburg
Combinatorial targeting of multiple myeloma by complementing T cell engaging antibody fragments. Commun Biol 2021; 4:44;  https://www.nature.com/articles/s42003-020-01558-0

#multiplesmyelom #lymphom #hemibodies #antikörper #immuntherapie #krebs #medizin #medimpressions

Fotocredit: Canva

Kategorien
Molekulare Medizin Neurologie Onkologie Wissenschaft

Neuer Mechanismus schützt vor Krebs und Epilepsie

Das Signalprotein MTOR (Mechanistic Target of Rapamycin) ist ein Sensor für Nährstoffe wie Aminosäuren und Zucker. Wenn genügend Nährstoffe zur Verfügung stehen, kurbelt MTOR den Stoffwechsel an. Fehler in seiner Aktivierung führen jedoch zu ernsten Krankheiten wie Krebserkrankungen, die mit übermäßiger Stoffwechselaktivität, Zellwachstum und -ausbreitung einhergehen. Auch Fehlentwicklungen des Nervensystems, die zu Schwierigkeiten in der Reizverarbeitung, Verhaltensstörungen und Epilepsie führen, können die Folge sein, wenn MTOR fehlgeschaltet ist.

Um Fehler in der Signalverarbeitung zu verhindern, kontrolliert die Zelle seine Aktivität sehr genau. Dies geschieht durch Proteinhemmer, wie dem TSC Komplex. Dieser sitzt gemeinsam mit MTOR an kleinen Strukturen in der Zelle, den sogenannten Lysosomen und hält ihn in Schach.

Forscherteams der Universität Innsbruck und des DKFZ erforschten nun, auf welche Weise der TSC Komplex an Lysosomen bindet. Sie entdeckten, dass die G3BP Proteine (Ras GTPase-activating protein-binding protein) zusammen mit dem TSC Komplex an Lysosomen sitzen. Dort bilden die G3BP Proteine einen Anker, der dafür sorgt, dass der TSC Komplex an die Lysosomen binden kann. Diese Ankerfunktion spielt in Brustkrebszellen eine entscheidende Rolle. Ist die Menge von G3BP Proteinen vermindert, so führt dies zu einer erhöhten MTOR Aktivität und steigert die Ausbreitung der KrebszellenG3BP-Eiweißstoffe könnten daher Marker sein, um personalisierte Therapien zu entwickeln und die Effizienz von Medikamenten, die MTOR hemmen, zu verbessern.

Im Zebrafisch beobachteten die Forschenden Störungen der Gehirnentwicklung, ähnlich einer Epilepsie beim Menschen, wenn G3BP fehlt. Man hofft deshalb, dass Patienten mit neurologischen Erkrankungen, bei denen die G3BP Proteine fehlerhaft sind, ebenfalls von MTOR-gerichteten Wirkstoffen profitieren können.

Referenzen:
Universität Innsbruck; Deutsches Krebsforschungszentrum Heidelberg
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling; Cell 2021; https://doi.org/10.1016/j.cell.2020.12.024

#krebs #epilepsie #mtor #suppressor #wirkstoffe #therapie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Epigenetik Hämatologie Onkologie Wissenschaft

Entstehung der chronisch lymphatischen Leukämie

Chronische Leukämien beginnen häufig schleichend. Erst nach und nach breiten sich weiße Blutzellen oder ihre Vorläufer unkontrolliert im Knochenmark aus, beeinträchtigen dort die normale Blutbildung und wandern in Milz, Leber und andere Organe ein.

Vom häufigsten Typ Blutkrebs bei Erwachsenen, der chronischen lymphatischen Leukämie (CLL), ist die Vorstufe bekannt: die monoklonale B-Zell-Lymphozytose (MBL). Fast jeder Fall einer CLL-Leukämie geht auf eine solche Lymphozytose zurück. Umgekehrt bekommen jedoch pro Jahr nur ein bis zwei Prozent der Lymphozytose-Patienten auch eine Leukämie.

Der Frage, wie beide Erkrankungen zusammenhängen, ging nun ein internationales Forscherteam anhand der Daten von 23 Patienten mit Lymphozytose nach, von denen fünf später eine Leukämie entwickelten. Das Ergebnis legt nahe, dass eine für Krebs charakteristische chemische Signatur der DNA schon in den frühesten Stadien der Lymphozytose vorhanden ist. Die typischen Veränderungen (Änderungen des Methylierungsmusters) am Erbgut bleiben über den gesamten Zeitraum stabil und sogar nach einer erfolgreichen Krebstherapie weiter bestehen. Es scheint, als würden die Weichen für die Krebserkrankung bereits äußerst früh gestellt werden und die charakteristischen chemischen Veränderungen an der DNA könnten also eine Voraussetzung und Treiber für die Entstehung der Krebserkrankung sein“, spekulieren die Forscher.

Für die Therapie hat dies keine unmittelbaren Konsequenzen. Es wird auch weiterhin keinen Grund geben, eine monoklonale B-Zell-Lymphozytose mit klassischen Therapien zu behandeln“, so die Forscher: „die Therapie bringt in diesem Stadium mehr Gefahren mit sich als die Erkrankung selbst. Allerdings könnten diese Erkenntnisse einmal in neuartige Therapien einfließen.“

Referenzen:
Max Planck Institut, Berlin; Dana Farber Cancer Institute, Boston
Pre-neoplastic alterations define CLL DNA methylome and persist through disease progression and therapy; Blood Cancer Discovery 2021; https://bloodcancerdiscov.aacrjournals.org/content/2/1/54

#leukämie #lymphozytose #bzellen #krebs #onkologie #epigenetik #methylierung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurologie Neurowissenschaften Technologie Wissenschaft

Gehirn: mehr Rechenpower und Speicherplatz als vermutet

Nervenzellen kommunizieren miteinander via Synapsen. Deren Leistung dürfte viel höher sein, als bisher vermutet, wie Neurowissenschaftler zeigen. Die Signalübertragung ist dabei umso stärker, je grösser eine Synapse ist. „Mit dieser Erkenntnis schließen wir eine zentrale Wissenslücke der Neurobiologie“, so Kevan Martin von der Universität Zürich: „zudem ist dieses Wissen entscheidend, um zu verstehen, wie Informationen durch die Schaltpläne des Gehirns fließen und somit unser Gehirn funktioniert.“

Um die Synapsenströme zwischen Nervenzellen zu messen, fertigten sie hauchdünne Schnitte eines Mausgehirns an und führten unter dem Mikroskop feine Glaselektroden in zwei benachbarte Nervenzellen der Großhirnrinde ein. Damit konnten sie eine der beiden Nervenzellen künstlich aktivieren und gleichzeitig die Stärke des resultierenden Synapsenstroms in der anderen Zelle messen. Zudem injizierten sie einen Farbstoff, um die verästelten Zellfortsätze im Lichtmikroskop dreidimensional rekonstruieren zu können.

„Damit können nun die Schaltkreise der Großhirnrinde mithilfe von Elektronenmikroskopie exakt kartografiert und deren Informationsfluss am Computer simuliert und interpretiert werden,“ erklärt Gregor Schuhknecht, ETH Zürich: „diese Arbeiten ermöglichen ein besseres Verständnis, wie das Hirn normalerweise funktioniert, und wie «Verdrahtungsdefekte» zu neurologischen Entwicklungsstörungen führen können.“

Mithilfe von mathematischen Analysen konnten die Forschenden auch zeigen, dass Synapsen komplexer sind als bisher angenommen. Sie können nicht nur ein einziges Vesikel mit Botenstoffen aussenden, wie bisher angenommen, sondern mehrere Vesikel an verschiedenen Stellen gleichzeitig. Damit lässt sich auch ihre Signalstärke dynamischer regulieren als bisher gedacht.

Referenzen:
ETH, Universität Zürich; Harvard University
Structure and function of a neocortical synapse; Nature 13.1.2021; https://www.nature.com/articles/s41586-020-03134-2

#gehirn #neurowissenschaften #verknüpfung #neuronen #nervenzellen #synapsen #medizin #medimpressions

Fotocredit: Canva

Kategorien
Psychologie Wissenschaft

Viel Geld – viel Glück und Zufriedenheit

„Ab einem gewissen Einkommen, bei etwa 50 000 bis 60 000 Euro, spielt Reichtum keine große Rolle mehr“, zu diesem Schluss kamen Forschende und Ökonomen bisher. Dem widerspricht jetzt eine amerikanische Studie. Sie besagt, dass nicht nur die allgemeine Lebenszufriedenheit, sondern auch das tägliche Wohlbefinden mit steigenden Kontozahlen  weiter ansteigt.

Der Psychologe Matthew Killingsworth von der University of Pennsylvania befragte für die neue Untersuchung mehr als 33 000 erwerbstätige Erwachsene in den USA an zufälligen Zeitpunkten des Tages via App: „Wie fühlen Sie sich gerade?“. Mit dem Ergebnis, dass Reichtum offenbar doch glücklicher macht als bisher angenommen. Der Hauptgrund dafür scheint zu sein, dass reiche Menschen eher das Gefühl haben, mehr Kontrolle über ihr Leben ausüben zu können. Für dieses Gefühl gibt es auch keinen oberen Grenzwert. Oder der Grenzwert liegt doch um einiges höher als bisher angenommen.

Der deutsche Glücksforscher Jan Delhey, Universität Magdeburg ist vorsichtig, die Befunde auf Europa zu übertragen. Dennoch weist auch eine weitere deutsche Studie darauf hin, dass Millionäre in Deutschland die größte allgemeine Lebenszufriedenheit haben. Allerdings, so Delhey, ist es nicht nur wichtig, wie viel Geld man habe, sondern auch, wofür man es ausgibt: „Hier zeigt die Forschung, dass Erlebnisse glücklicher machen als Güter, weil sie sich weniger abnutzen und durch Vergleiche nicht so leicht entwertet werden können.“ Ebenso macht es glücklich, wenn man Geld nicht nur für sich, sondern auch für andere ausgibt. Und im Einzelfall finden sich ja sowohl kreuzunglückliche Hocheinkommensbezieher als auch Menschen mit geringerem Einkommen und hohem Wohlbefinden.

Referenzen:
University of Pennsylvania, Universität Magdeburg
Pressemitteilung APA 21.1.21; https://science.apa.at/power-search/11111212686031687383
Originalpublikation: Experienced well-being rises with income, even above $75,000 per year, PNAS Jan 26.2021; https://www.pnas.org/content/118/4/e2016976118/tab-article-info

#einkommen #vermögen #glück #zufriedenheit #oekonomie #wohlbefinden #leben #medizin #medimpressions

Fotocredit: Canva

Kategorien
Arbeitsmedizin Infektiologie Virologie Wissenschaft

Virenschutz durch selbstdesinfizierende Masken

Die Schutzwirkung von Masken basiert auf der Filterung der Aerosole oder zusätzlich auf der passiven Inaktivierung der Viren mittels geladener Oberflächen, zum Beispiel durch Silberkationen. Damit Masken zuverlässig schützen, müssen sie rechtzeitig ersetzt werden. Eine Schutzmaske, die sich jederzeit auf Knopfdruck sterilisieren lässt, hätte hier entscheidende Vorteile. Schweizer Forschende haben nun einen Prototyp entwickelt, der bereits im Frühling 2021 auf den Markt kommen soll.

Die neuartige Maske besteht aus einem mehrlagigen Spezialstoff sowie Elektroden und einer Spannungsquelle. Zwischen zwei leitenden Schichten liegt eine isolierende Membran. Dank einer integrierten und über einen USB-Anschluss aufladbaren Batterie wird auf Knopfdruck eine elektrische Spannung von wenigen Volt angelegt. Diese erzeugt reaktive Sauerstoffmoleküle, die Viren und auch Bakterien zuverlässig inaktivieren. Auf diese Weise lässt sich die Oberfläche der Maske in wenigen Minuten, sogar während des Tragens, sterilisieren. Die angelegte Spannung und die erzeugten reaktiven Sauerstoffmoleküle sind dabei minimal und für Menschen unbedenklich.


Welche reaktiven Sauerstoffmoleküle produziert werden und wie effizient diese die Krankheitserreger inaktivieren, hängt von der eingesetzten Spannung und von den verwendeten Materialien ab. Im Labor wird aktuell nach der optimalen Mischung gesucht. Je nach Spannung und Aufbau des Textils wird derzeit eine Vireninaktivierung von über 99 Prozent erreicht. Die Sterilisierungseffizienz kann aber auch je nach Einsatzbereich, spezifisch angepasst werden. Im Rahmen des Projekts wollen die Forschenden diese Technologie nun auf weitere Anwendungen ausdehnen, so etwa auf Sitzbezüge und andere Textilien im öffentlichen Bereich.

Referenz:
Zürcher Hochschule für Angewandte Wissenschaften
Pressemeldung der ZHAW, 19.1.21
https://www.zhaw.ch/de/medien/medienmitteilungen/detailansicht-medienmitteilung/event-news/selbstdesinfizierende-maske-ermoeglicht-aktiven-virenschutz-auf-knopfdruck/

#masken #corona #desinfektion #vireninaktivierung #virenabwehr #sarscov2 #virenschutz #medizin #medimpressions

Fotocredit: Canva

Kategorien
Digital Health Neurologie Wissenschaft

Oberflächen-Elektrostimulation verhindert Zittern

Patienten mit Essentiellem Tremor leiden an einem rhythmischen Zittern, vornehmlich der Hände. Dieses lässt sich durch tiefe Hirnstimulation mittels eines implantierten Hirnschrittmachers wirksam behandeln. Eine aktuelle Studie zeigt jetzt, dass auch eine nicht-invasive Stimulation mit Oberflächenelektroden die Intensität des Händezitterns deutlich reduzieren kann.

Dazu wurden Patienten feine Elektroimpulse über Klebeelektroden auf der Kopfhaut verabreicht. Wobei die patientenindividuelle Frequenz und Amplitude des Händezitterns mittels eines Beschleunigungssensors, eines sogenannten Accelerometers am Mittelfinger der Probanden gemessen wurde. In Abhängigkeit von diesen Messungen wurde das Gehirn dann mit minimalem Wechselstrom stimuliert. Es zeigte sich, dass bei der Mehrzahl der Patienten das Zittern während der randomisiert wiederholten, 30 Sekunden dauernden Stimulation zurückging oder gänzlich aufhörte.

Für die Steuerung der Stimulation in Echtzeit wurde eine neue mathematische Methode entwickelt, um die kontinuierliche Anpassung an das variable Zittern zu ermöglichen. Der Algorithmus ist so elegant, dass für seine Anwendung nur eine vergleichsweise geringe Rechenleistung nötig ist. Erstautor Sebastian Schreglmann, Uniklinikum Würzburg; „Für die Vision eines nicht-invasiven Hirnschrittmachers ist dies ein wesentlicher Punkt – dadurch könnte ein kleiner, zum Beispiel am Gürtel zu tragender Controller zur Steuerung ausreichen.“ Eine Anwendung dieses Algorithmus ist auch bei anderen Erkrankungen, die auf einer fehlgeleiteten rhythmischen Aktivität im Gehirn basieren, prinzipiell vorstellbar.


Referenzen:
Uniklinikum Würzburg, ICL London, UCL London
Non-invasive suppression of essential tremor via phase-locked disruption of its temporal coherence; Nat Commun 2021; 12:363; https://www.nature.com/articles/s41467-020-20581-7

#elektrostumulation #zittern #tremor #elektroden #gehirn #elektroimpulse #hirnschrittmacher #medizin #medimpressions

Fotocredit: Canva

Kategorien
Genetik Neurowissenschaften Wissenschaft

Neue Therapie für kranke Nervenzellen

Nervenzellen sind langlebig, im Falle von neurodegenerativen Erkrankungen wie der amyotrophen Lateralsklerose (AML) oder der frontotemporalen Demenz (FTD) können sie sich aber nicht mehr regenerieren. Bei der Entstehung solcher Erkrankungen spielt die Verklumpung von Proteinen im Zellkern eine zentrale Rolle. Forscher an der Med-Uni Graz haben gemeinsam mit internationalen Kollegen einen Mechanismus gefunden, der im Normalfall die krankmachende Verklumpung der RNA-bindenden Proteine verhindert.

Bei vielen neurodegenerativen Erkrankungen kommt es im Zellkern von Nervenzellen zu pathologischen Ablagerungen von Proteinen, die das Absterben dieser Zellen auslösen. Die Folge ist eine schrittweise Beeinträchtigung der körperlichen und geistigen Fähigkeiten. Wenn ALS und FTD genetisch veranlagt ist, entstehen sogenannte DPR-Proteine (Dipeptid-Wiederholungsproteine) durch Abschreiben von Hexanukleotid-Wiederholungen im C9orf72-Gen. Das Forscherteam untersuchte, ob diese aggregationsfreudigen DPR-Proteine durch körpereigene Proteine, speziell Importin-Proteine, vor einer Verklumpung geschützt werden können.

Ihre Untersuchungen dieser körpereigenen nuklearen Importrezeptoren belegen, dass solche Proteine tatsächlich die Verklumpung von DPR Proteinen verhindern und deren toxische Wirkung aufheben können. „Diese Entdeckung war für uns faszinierend und könnte therapeutische Auswirkungen haben, da sie darauf hindeutet, dass Therapeutika mit Ähnlichkeiten zu Import Proteinen vielversprechend bei der Behandlung von ALS und FTD sein könnten“, erklärte Tobias Madl, MedUni Graz.  Zur Entwicklung neuer Therapeutika werden aber wohl noch einige Jahre benötigt.

Referenzen:
Med-Uni Graz; LMU, München; University of Pennsylvania; DZNE, München; Universität Zürich
Nuclear Import Receptors Directly Bind to Arginine-Rich Dipeptide Repeat Proteins and Suppress Their Pathological Interactions“, Cell Reports 2020, 33:12
https://www.sciencedirect.com/science/article/pii/S2211124720315278

#aml #ftd #neurodegenerativeerkrankung #nervenzellen #verklumpung #therapie #zellkern #medizin #medimpressions

Fotocredit: Canva