Kategorien
Biotechnologie Reproduktionsmedizin Wissenschaft

Züchtung von Organoiden auf Internationaler Raumstation ISS

UZH Space Hub und Airbus Defense and Space bringen mit dem nächsten Versorgungsflug zur Internationalen Raumstation ISS ein Experiment ins All, mit dem die industrielle Produktion menschlichen Gewebes in Schwerelosigkeit weiter vorangetrieben werden soll.

Mit diesem Schritt könnte der Weltraum zur Werkstätte werden, um menschliche Mini-Gewebe für den irdischen Einsatz in Forschung und Medizin herzustellen. Erste vorbereitende Tests mit differenzierten organähnlichen Leber-, Knochen- und Knorpel-Strukturen auf der ISS vor 18 Monaten waren erfolgreich verlaufen.

„Auf der Erde lassen sich wegen der Schwerkraft ohne Stützskelette keine dreidimensionalen Organoide produzieren», erläutert Biologin Cora Thiel. Auf großes Interesse stoßen solche 3D-Organoide bei Pharmaunternehmen: Toxikologische Studien könnten so ohne Umweg über Tiermodelle direkt an menschlichen Geweben durchgeführt werden. Aus Patientenstammzellen gezüchtete Organoide könnten zudem in Zukunft als Bausteine für Gewebe-Ersatz zur Therapie geschädigter Organe eingesetzt werden. Denn die Zahl der gespendeten Organe kann den weltweiten Bedarf an Tausenden von Spenderorganen bei Weitem nicht decken.

Das neue Probenmaterial wird Anfang Oktober zurück zur Erde kommen. Erste Ergebnisse sind ab November zu erwarten. Geplanter Start der Mission ist der 28. August 2021 um 3:37 EST vom Launch Pad LC-39A, Kennedy Space Center, Florida, USA.

Referenz: Universität Zürich
UZH und Airbus züchten menschliches Mini-Gewebe auf der Internationalen Raumstation ISS, Medienmitteilung 26.8.2021 Universität Zürich; https://www.media.uzh.ch/de/medienmitteilungen/2021/UZH-Space-Hub.html

#organoide #raumfahrt #gewebeproduktion #weltraum #spacehub #minigewebe #medizin #medimpressions

Fotocredit: shutterstock

Kategorien
Biotechnologie Diabetologie Digital Health Genetik Interne Medizin Wissenschaft

Insulin per Smart-Watch

Schweizer Forschende haben einen Genschalter entwickelt, der sich mit dem grünen LED-Licht handelsüblicher Smartwatches betätigen lässt – eine Premiere, die künftig für die Diabetesbehandlung genutzt werden könnte.

Viele moderne Uhren haben LED-Dioden integriert. Diese geben kontinuierlich oder gepulst grünes Licht ab, das die Haut durchdringt und unter anderem dafür genutzt wird, während sportlicher Betätigung oder in Ruhe den Puls zu messen. Forschende um Martin Fussenegger vom Departement Biosysteme in Basel wollen diese Lichtquelle nun nutzen, um durch die Haut hindurch Gene zu steuern und das Verhalten von Zellen zu verändern.

Sie entwickelten einen molekularen Schalter, der – einmal implantiert – mit grünem Licht von Smartwatches aktiviert werden kann. Dieser ist gekoppelt mit einem genetischen Netzwerk, das die Forschenden menschlichen Zellen hinzufügten. Je nach Konfiguration dieses Netzwerks – sprich: mit welchen Genen es ausgestattet ist – kann es beispielsweise Insulin produzieren, sobald grünes Licht auf die Zellen trifft. Wird das Licht ausgeschaltet, wird der Schalter inaktiviert und der Vorgang stoppt. Die Forschenden benutzten dafür die Standardsoftware der Smartwatch und mussten nicht einmal eigene Programme entwickeln.

Ihr System testeten die Forschenden sowohl an einer Speckschwarte (Lichtdurchlässigkeit) als auch an lebenden Mäusen, denen sie die entsprechenden Zellen implantierten und eine Smartwatch wie ein Rucksack anschnallten. Durch das Starten des Laufprogramms der Uhr schalteten die Forschenden das Grünlicht ein und setzten die Kaskade in Gang.

Es ist das erste Mal, dass man mit elektronischen Geräten, die auf der Hautoberfläche getragen werden, sogenannten Wearables, ein solches Implantat steuern kann, so die Forscher, bis die Technologie jedoch in die Klinik kommt, dauert es noch mindestens 10 Jahre.

Referenz:
Universität Basel
Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes, Nature Comm 2021, https://www.nature.com/articles/s41467-021-23572-4

#diabetes #smartwatch #insulin #genschalter #uhr #sportuhr #lichtsteuerung #medizin #medimpressions

Fotocrredit: Canva

Kategorien
Biotechnologie Genetik Interne Medizin Kardiologie Molekulare Medizin Personalisierte Medizin Wissenschaft

Gen-Editierung senkt Cholesterinwerte dauerhaft

Ein internationales Forschungsteam unter Leitung der Universität Zürich (UZH) konnte zeigen, dass hohe LDL-Cholesterinwerte, die zu den größten Risikofaktoren von Herz-, Kreislauferkrankungen zählen, mit einer neuartigen präzisen Methode der Gen-Editierung dauerhaft gesenkt werden können. Das Team schleuste eine einzelne Punktmutation in das Gen ein, welches das Enzym PCSK9 kodiert. Dieses Protein ist an der Aufnahme von Cholesterin aus dem Blut in die Zellen beteiligt.

Die verwendete Technologie der Gen-Editierung basiert auf sogenannten Basen-Editoren. Diese Proteine können im DNA-Molekül einen einzelnen „Buchstaben“ eines Gens auswechseln. Ein Adenin (A) wird so zum Beispiel zu einem Guanin (G).
Um das Werkzeug kontrolliert in die Leber zu platzieren, adaptierten die Forschenden die RNA-Technologie, die in COVID-19-Impfstoffen verwendet wird. Anstatt jedoch eine RNA, die für das Spike-Protein von SARS-CoV2 kodiert, in Lipid-Nanopartikel einzuhüllen, taten sie dies mit einer RNA, die für den Adenin-Basen-Editoren kodiert.
Die Verbindungen aus RNA und Lipid-Nanopartikeln wurden zwei Tierarten intravenös verabreicht, was zur Aufnahme und einer vorübergehenden Produktion des Basen-Editor-Werkzeugs in der Leber führte. Bei Mäusen konnten so bis zu zwei Drittel der PCSK9-Gene dauerhaft verändert werden, bei Makaken rund ein Drittel. In beiden Fällen führte dies zu einer deutlichen Senkung des LDL-Cholesterinspiegels.

Mit dieser präzisen und effizienten Methode eröffnen sich neue Therapieperspektiven für Patienten mit familiärer Hypercholesterinämie, einer vererbten Form von hohen Cholesterinwerten. Da etwa 30 Prozent aller erblichen, krankmachenden Mutationen von einzelnen fehlgeleiteten Basen verursacht werden, könnten sich künftig auch Störungen des Aminosäuren-Haushalts oder des Harnstoffzyklus auf diesem Weg behandeln lassen.

Referenz:
Universität Zürich
In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels, Nature Biotech 2021; https://www.nature.com/articles/s41587-021-00933-4

#geneditierung #cholesterin #basentausch #hypercholesterinaemie #mutation #enzym #rna #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Genetik Gynäkologie Onkologie Wissenschaft

Tumore, die sich selbst aus dem Weg räumen

Eine neue Technologie ermöglicht dem Körper, therapeutische Wirkstoffe auf Abruf an genau der Stelle herzustellen, an der sie benötigt werden. Die Innovation könnte die Nebenwirkungen einer Krebstherapie reduzieren und dabei helfen, Covid-Behandlungen besser in die Lunge zu verabreichen.

Forschende der Universität Zürich haben ein weit verbreitetes Atemwegsvirus, genannt Adenovirus, so modifiziert, dass es wie ein trojanisches Pferd funktioniert und Gene für therapeutische Wirkstoffe direkt in Tumorzellen transportiert. Im Gegensatz zur Chemo- oder Strahlentherapie schadet dieser Ansatz den normalen, gesunden Zellen nicht, denn sie verbleiben exakt an der Stelle im Körper, an der sie gebraucht werden, anstatt sich im Blutkreislauf zu verteilen, wo sie gesunde Organe und Gewebe schädigen können. In den Tumorzellen angekommen, dienen die gelieferten Gene als Vorlage für therapeutische Antikörper, Zytokine und andere Botenstoffe, die von den Krebszellen selbst produziert werden und den Tumor von innen heraus eliminieren.

Dank des als SHREAD bezeichneten Systems (Shielded, Retargeted Adenovirus) brachten die WissenschaftlerInnen den Tumor in der Brust einer Maus dazu, einen zur Behandlung von Brustkrebs klinisch zugelassenen Antikörper namens Trastuzumab (Herceptin) zu produzieren. Mithilfe eines hochauflösenden 3D-Bildgebungsverfahren und transparent gemachtem Gewebe konnten sie dann zeigen, wie der im Körper produzierte therapeutische Antikörper Poren in Blutgefäßen im Tumor erzeugt, dort Zellen zerstört und ihn so von innen heraus behandelt. Die Technologie wäre für die Verabreichung einer breiten Palette von  Substanzen in verschiedenen Organen und bei verschiedenen Erkrankungen anwendbar.

Referenz:
Universität Zürich
The SHREAD gene therapy platform for paracrine delivery improves tumor localization and intratumoral effects of a clinical antibody as shown by PACT, PNAS 2021, https://www.pnas.org/content/118/21/e2017925118/tab-article-info

#krebs #krebstherapie #tumor #brustkrebs #gentaxi #gentransfer #herceptin #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Diagnostik Technologie Wissenschaft

Biochips schmuggeln effizient Wirkstoffe in Zellen ein

Moderne Impfstoffe wie die gegen Sars-CoV-2 nutzen winzige Fettkügelchen, um genetische Informationen in Zellen zu bringen und so eine Immunabwehr gegen das gefährliche Virus aufzubauen. Ein Team von WissenschaftlerInnen hat nun eine ganz neue Methode entwickelt, mit deren Hilfe sich sehr effizient nicht nur Gene, sondern auch Wirkstoffe und andere Substanzen in Zellen transportieren lassen. Das neue Verfahren, das jetzt auch als Patent eingereicht wurde, nennt sich „Progressive Mechanoporation“.

Die ForscherInnen entwickelten einen speziellen Biochip aus einem Kunststoff, auf dem hintereinander immer enger werdende Kanäle, die mehr als zehnmal kleiner sind als ein menschliches Haar, angeordnet sind. Zellen, die durch diese Kanäle gepresst werden, strecken sich dabei immer stärker, bis Löcher in der Plasmamembran entstehen. Durch diese Löcher können dann Moleküle in das Zellinnere gelangen. Haben die Zellen die Kanäle passiert, schließen sich die Löcher von alleine wieder. Die Forschenden haben gezeigt, dass das sogar mit sehr großen Proteinen, wie beispielsweise Antikörper, klappt.

Ein großer Vorteil der Methode: Pro Sekunde können so bis zu 10.000 Zellen durch den Chip geschickt werden. Gleichzeitig ist das Verfahren sehr schonend, nur wenige Zellen werden im Vergleich zu anderen Techniken geschädigt.
Mit Hilfe der neuen Methode könnten Pharmahersteller künftig etwa sehr effizient Wirkstoffe testen, um neue Medikamente zu entwickeln. Krankenhäuser könnten in Zukunft mit der „Progressiven Mechanoporation“ routinemäßig Zellen von Patienten untersuchen und sogar behandeln.

Referenz:
TU Dresden; Max-Planck-Zentrum für Physik und Medizin; ICR, London
Efficient and gentle delivery of molecules into cells with different elasticity via progressive mechanoporation, Lab Chip, 2021, Advance Article;
https://doi.org/10.1039/d0lc01224f

#wirkstoffe #transport #intrazellulär #biochip #membran #medikamentenentwicklung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Entwicklungsbiologie Genetik Tumorbiologie Wissenschaft

Der kleine Unterschied zeigt sich schon bei Embryonen

Ein Berliner Forschungsteam hat auf dem X-Chromosom Gene gefunden, die Unterschiede zwischen der männlichen und weiblichen Embryonalentwicklung erklären. Anders als der männliche legt der weibliche Embryo bei Mäusen in der frühen Entwicklung eine Pause ein. Warum sich weibliche Säugetiere etwas langsamer entwickeln, ist noch unklar.

Auf der Suche nach den Faktoren, die für die verzögerte Entwicklung von weiblichen Zellen verantwortlich sind, wurden zwei Gene, mit den Namen Dusp9 und Klhl13 identifiziert. Sie kodieren für Proteine, die den MAPK-Signalweg steuern. Über diesen zellulären Kommunikationskanal entscheidet die Zelle, ob sie weiterwächst und sich spezialisiert – oder in ihrem Stammzellzustand verharrt. Dass die Gene auf dem X-Chromosom liegen, macht sie besonders interessant. Die Zellen von männlichen Säugetieren besitzen in der Regel jeweils ein X- und ein Y-Chromosom, weibliche dagegen zwei X-Chromosomen – sie benötigen allerdings nur eines. Einige Zeit nach der Befruchtung schalten die Zellen eines weiblichen Embryos daher das überzählige X-Chromosom ab.

„Wir haben nicht nur zentrale Regulatoren für die frühe Sexualdifferenzierung in embryonalen Stammzellen gefunden“, so die Forscher: „Wir konnten auch zeigen, wie ein zusätzliches Chromosom den Zellzustand global beeinflussen kann.“
Daraus lassen sich auch Schlüsse für Krankheiten bei Menschen ziehen. Männer und Frauen sind für bestimmte Krebsarten unterschiedlich anfällig und dies muss nicht immer am Einfluss der Hormone liegen. Bei Krebs sind häufig Teile des MAPK-Signalwegs mutiert und funktionieren nicht mehr korrekt. Möglicherweise spielen geschlechtsspezifische Effekte hier eine Rolle, wenn das inaktive X-Chromosom in den Krebszellen wieder eingeschaltet wird.

Referenz:
Max-Planck-Institut Berlin
Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach, Genome Biol. 2021; https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02321-2

#krebs #onkologie #krebsforschung #geschlechtsunterschied #embryo #xchromosom  #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Interne Medizin Onkologie Personalisierte Medizin Tumorbiologie Wissenschaft

Bauchspeicheldrüsen-Tumore aus dem Labor

Bauchspeicheldrüsenkrebs (hier: duktales Pankreaskarzinom) zählt zu den tödlichsten Krebsarten: Aufgrund unspezifischer Symptome (Gewichtsverlust, Bauchschmerzen) wird der Tumor oft erst so spät entdeckt, dass eine Heilung nicht mehr möglich ist.

Um ein detailliertes Verständnis der frühen Krebsentstehung zu erhalten, haben Forschende jetzt Bauchspeicheldrüsen-Modelle – so genannte duktale Pankreas-Organoide – hergestellt, aus denen gezielt Tumore entwickelt und von Anfang an beforscht werden können.
Die Mini-Organe aus dem Labor werden aus menschlichen, pluripotenten Stammzellen gezüchtet und entsprechen dem Gangsystem der Bauchspeicheldrüse, das Verdauungsenzyme in den Zwölffingerdarm transportiert. Davon ausgehend können gezielt krebsfördernde Gene eingeschalten und die mutationsspezifischen Auswirkungen in den Organoiden beobachtet werden. In der Zellkultur ist es bereits gelungen, die Entstehung von Krebsvorstufen auszulösen und zu untersuchen. In die Bauchspeicheldrüsen von Mäusen transplantiert, entwickelten sich diese Dysplasien bereits nach acht Wochen zu spezifischen Tumoren weiter.

Mittels Gen-Editierung, Stammzell-Reprogrammierung und weiterer biomedizinischer Methoden können sogar hochindividuelle, patientenspezifische Pankreas-Modelle für Untersuchungen hergestellt werden: indem beispielsweise Haare von genetisch vorbelasteten PatientInnen zu pluripotenten Stammzellen „reprogrammiert“ werden.
Auch um die Ausbildung von Metastasen zu verstehen, planen die Forschenden nun längerfristige Untersuchungen. Darüber hinaus soll das Protokoll zur Herstellung der Mini-Organe so optimiert werden, dass eine Übertragung ins Mausmodell nicht mehr nötig ist, so dass sich auf längere Sicht Tierexperimente in der Krebsforschung reduzieren lassen.

Referenz:
Universität Ulm, TU München, Helmholtz Zentrum München
Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stemcells, Cell Stem Cell 202, DOI: https://doi.org/10.1016/j.stem.2021.03.005

#pankreaskarzinom #bauchspeicheldruese #krebs #krebsforschung #organoid #duktaleskarzinom #stammzellen #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Genetik Molekulare Medizin Onkologie Tumorbiologie Virologie Wissenschaft

Tiere mit eingebauter Genschere

Gentechnisch veränderte Tiere liefern wichtige Erkenntnisse über die molekularen Grundlagen von Gesundheit und Krankheit. Die Forschung hat sich hauptsächlich auf gentechnisch veränderte Mäuse konzentriert, obwohl andere Spezies, wie etwa Schweine, der menschlichen Physiologie ähnlicher sind.
ForscherInnen der Technischen Universität München (TUM) zeigen jetzt einen Weg auf, wie molekulare Mechanismen von Krankheitsresistenzen oder biomedizinische Fragestellungen im Nutztier effizient untersucht werden können: In der Grundlagen- und biomedizinischen Forschung können die Forschenden jetzt Gen-Mutationen gezielt in ein Wunschorgan einbringen oder auch bestehende Gene korrigieren, ohne für jedes Ziel-Gen neue Tiermodelle erzeugen zu müssen. Dies reduziert auch die Anzahl an Versuchstieren.

Ermöglicht wurde dies durch den Einbau des richtigen Werkzeugs, der „Genschere“ CRISPR/Cas9, die dauerhaft in den Organen von zwei Tierspezies – Schweinen und Hühnern – eingebracht wurde, um die Informationen der DNA punktgenau umzuschreiben zu können. Gene können damit inaktiviert oder gezielt modifiziert werden. „Es müssen also nur noch die leitenden RNAs eingebracht werden, um Tiere zu bekommen, die bestimmte genetische Eigenschaften haben“, so Mitautor Benjamin Schusser (TUM).

Besonders nützlich sind die von den Forschenden erzeugten gesunden Hühner und Schweine im Bereich der biomedizinischen und landwirtschaftlichen Forschung. So werden Schweine gerne als Krankheitsmodelle in der Krebsforschung eingesetzt, da ihre Anatomie und Physiologie dem Menschen viel mehr ähnelt als die der Maus. Der Mechanismus des CRISPR/Cas9 Systems kann außerdem zur Bekämpfung von Infektionen mit DNA-Viren nützlich sein. „Erste Arbeiten in Zellkulturen zeigten, dass das für das Geflügel-Herpesvirus schon funktioniert“, so Schusser.

Referenz:
TU München
Cas9-expressing chickens and pigs as resources for genome editing in livestock, PNAS 2021, https://doi.org/10.1073/pnas.2022562118

#genom #editierung #crispr #gene #genschere #mutation #gentechnik #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Genetik Molekulare Medizin Onkologie Pharmakologie Wissenschaft

„Durchbruch“ ins Zellinnere

Unser Zellinneres ist aus gutem Grund durch eine Zellmembran vor unerwünschten Besuchern geschützt. Aus pharmakologischer Sicht ist dieser Schutz jedoch ein lästiges Hindernis, da große Proteine oder Antikörper nur schwer bis gar nicht ins sogenannte Zytoplasma gelangen. Die meisten Medikamente umgehen diese Barriere, indem sie an der Zelloberfläche ansetzen und ihre Wirkung über eine Reihe von weiteren Proteinen entfalten.

Um große Biomoleküle wie Proteine oder Antikörper direkt in die Zelle zu bekommen, wird seit mehr als zwei Jahrzehnten an zellpenetrierenden Peptiden geforscht. Dabei wird ein großes Molekül mit einem chemischen „Schuhlöffel“ verknüpft, der das Eindringen in die Zelle erleichtern soll. Ein Konzept, das bei großer „Fracht“ bisher aber scheiterte. Jetzt präsentieren Forscher vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin und der TU Darmstadt eine neue Lösung. Ihr Trick: Sie verknüpfen nicht nur das zu transportierende Molekül mit den zellpenetrierenden Peptiden, sondern auch die Zelloberfläche.

Wie Experimente an lebenden Zellen zeigen, wird dadurch die intrazelluläre Aufnahme von funktionalen Proteinen und Antikörpern erheblich verbessert. Diese passieren nicht nur mühelos die Zellmembran, sondern sind auch in der Zelle aktiv, ohne toxisch zu sein. Entscheidend ist auch, dass mit dem neuen Verfahren nur rund ein Zehntel der bisher verwendeten Substanz-Konzentrationen benötigt werden. Fazit des Studienleiters Anselm Schneider: ein „Durchbruch“ im wahrsten Sinne des Wortes.

Mit dieser neuen Methode könnten nun etwa Signalwege in einer Krebszelle gezielt beeinflusst oder fehlende Enzyme, zum Beispiel bei einer Erbkrankheit ersetzt werden. Gene-Editing, also eine genetische Manipulation von Zellen, könnte ebenfalls auf diesem Weg erfolgen.

Referenz:
FMP Berlin, TU Darmstadt
Cellular uptake of Large Biomolecules Enabled by Cell-surface-reactive Cell-penetrating Peptide Additives, Nature Chemistry 2021,
https://www.nature.com/articles/s41557-021-00661-x

#pharmakologie #molekültransport #zellmembran #antikörper #proteine #intrazellulär #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Diagnostik Genetik Infektiologie Wissenschaft

Modell zur Vorhersage der Antibiotikaresistenz entwickelt

Antibiotikaresistente Bakterien gefährden die Antibiotikabehandlung von Millionen von Menschen weltweit und verursachen Hundertausende Todesfälle. Das Wissen um die Entwicklung von Antibiotikaresistenzen könnte helfen, optimale Behandlungsprotokolle, Angriffspunkte für Medikamente und neue Antibiotika-Kandidaten zu identifizieren. Eben das ist WissenschaftlerInnen nun gelungen. Sie haben ein Modell entwickelt, das Wachstumsraten und Resistenzentwicklung gängiger Bakterienmutanten bei unterschiedlichen Medikamentendosierungen vorhersagt.

Bakterien verändern ihr Genom, wenn sie Medikamenten ausgesetzt werden. Die mutierten Zellen wachsen in Gegenwart von Antibiotika stärker, in einer medikamentenfreien Umgebung ist das Wachstum geringer. Die Zellen müssen die Entscheidung über Resistenz jedoch optimieren. Das neue Modell beschreibt diesen Prozess. Erstautorin Fernanda Pinheiro, Uni Köln, vergleicht dies mit einem Unternehmer, der Häuser baut und verkauft: „Die Häuser wurden mit einem festen Budget gebaut. Je nach Standort muss man mehr oder weniger in den Schutz vor Kälte investieren und dafür Abstriche beim Design machen. Ein hässliches Haus verkauft sich aber schlecht. In ähnlicher Weise entscheidet die Evolution der Bakterien darüber, wieviel Proteine in die Antibiotikaresistenz investiert werden.“

Dabei haben Bakterien mehrere Optionen. Welche sie wählen, kann das Modell erfolgreich voraussagen. Pinheiro: „Um das Haus warm zu halten, kann man zum Beispiel in dicke Fenster oder in die Heiztechnik investieren. Was besser ist, entscheidet sich aus dem Ganzen, denn im Bakterium stehen die verschiedenen Zellteile in Abhängigkeiten. Mutationen verändern diese Teile und hinterlassen Spuren im Wachstumsmuster die genutzt werden können, um etwas über den Evolutionsprozess zu lernen und letztendlich die Evolution vorherzusagen.“

Referenz:
Universität Köln, Universität Uppsala
Metabolic fitness landscapes predict the evolution of antibiotic resistance, Nature 2021; https://www.nature.com/articles/s41559-021-01397-0

#resistenzentwicklung #antibiotika #bakterien #evolution #wachstumsmuster #vorhersage #medizin #medimpressions

Fotocredit: Canva