Kategorien
Diagnostik Digital Health Interne Medizin Technologie Wissenschaft

Ultraleichtes Sensorpflaster ersetzt Kabel und Geräte

Für viele Menschen ist es ein notwendiges Übel – das dreimal tägliche Messen von Blutdruck und Puls. Stress verursachen auch die eingesetzten Messgeräte, die hinsichtlich Größe und Gewicht, als auch Messvorgang meist als unhandlich empfunden werden, was folglich sogar die Blutdruckwerte verfälschen kann.

Diese Situation inspirierte Forscher des Joanneum Research, gemeinsam mit Kollegen der Osaka Universität, ein elektronisches Sensorpflaster für Gesundheitsparameter zu entwickeln, das so dünn ist, dass man es kaum spürt. Insgesamt ist das Pflaster nicht mehr als 0,0025 mm dick und enthält ein ferroelektrisches Polymer zwischen zwei Elektrodenflächen, das auf einer hauchdünnen Trägerfolie aufgebracht wurde. Es schmiegt sich komplett an die Haut an und ist damit der weltweit erste, ultraflexible piezoelektrische Sensor. Neben der Pulsrate kann das Sensorpflaster Aussagen über die Elastizität der menschlichen Blutgefäße machen und über die Pulswellengeschwindigkeit den Blutdruck messen. Die Messdaten können dank eines Elektronikmoduls auch an ein Smartphone drahtlos übertragen werden.

Besonders faszinierend ist, dass das Sensorpflaster kabellos und komplett energieautark eingesetzt werden kann, da die Gewinnung der elektrischen Energie – mittels entsprechender Schaltung – über biomechanische Bewegungen, etwa während des Stufensteigens, gewonnen werden kann. Dies würde für eine dreimal tägliche Blutdruckmessung ausreichen, so die Forscher, vorausgesetzt, es findet sich ein leichtes  verbrauchsarmes Elektronikmodul für kabellose Datenübertragung, die derzeit noch rar gesät sind.

Elektronische Sensorpflaster könnten künftig als Teil des Screenings bei weiteren Herz-Kreislauferkrankungen, Stressfaktoren und Schlafapnoe eingesetzt werden.

Referenz:
Joanneum Research Weiz/Graz; Osaka University
Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes, Nature Comm 2021; https://www.nature.com/articles/s41467-021-22663-6

#messpflaster #sensoren #blutdruckmessung #puls #datenaufzeichnung #smartphone #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Digital Health Genetik Molekulare Medizin Technologie Wissenschaft

Computerspiele für Forscher

Je größer und umfassender Netzwerke sind, desto schwieriger wird auch ihre Darstellung auf dem Bildschirm. Dies betrifft auch die Interaktion verschiedener Proteinkomplexe im menschlichen Körper. Der Netzwerkwissenschaftler Jörg Menche und seine Forschungsgruppe am CeMM Forschungszentrum für Molekulare Medizin entwickelten nun eine Virtual Reality-Plattform, die es ermöglicht, riesige Datenmengen und deren komplexes Zusammenspiel auf eine einzigartige, intuitive Weise zu untersuchen. Dabei bedienten sie sich der Technologie, die normalerweise in der Entwicklung von 3-D-Computerspielen genutzt wird.

Der menschliche Körper stellt mit seinen rund 20.000 Proteinen, die im menschlichen Genom codiert sind und miteinander interagieren, ein riesiges komplexes Netzwerk dar. Stellt man die Protein-Interaktionen dar, entsteht ein kaum darstellbares Bild aus rund 18.000 Punkten – Proteinen – und rund 300.000 Strichen zwischen diesen Punkten.
Um dieses Bild „lesbar“ zu machen, schafften es die ForscherInnen erstmals, die Gesamtheit der Proteininteraktion sichtbar zu machen, um das riesige und komplexe Netzwerk interaktiv erkunden zu können.

Die 3-dimensionale Darstellung kann insbesondere bei der Identifikation seltener Gendefekte wichtig und entscheidend für therapeutische Maßnahmen sein. „Unsere Studie stellt einerseits einen wichtigen „Proof of concept“ unserer VR-Plattform dar, andererseits zeigt sie unmittelbar das enorme Potenzial der Visualisierung molekularer Netzwerke“, so Projektleiter Menche. „Gerade bei seltenen Erkrankungen, schweren Immunerkrankungen, können Proteinkomplexe, die mit spezifischen klinischen Symptomen assoziiert werden, genauer analysiert werden, um Hypothesen über ihre jeweiligen pathobiologischen Mechanismen zu entwickeln. Dies erleichtert die Annäherung an Erkrankungsursachen sowie infolge die Suche nach gezielten therapeutischen Maßnahmen.“

Referenz:
CeMM, St. Anna Kinderkrebsforschung Wien
VRNetzer: A Virtual Reality Network Analysis Platform, Nature Communications 2021; https://www.nature.com/articles/s41467-021-22570-w

#virtualreality #forschung #proteine #interaktionen #darstellung #3D #medizin #medimpressions

Fotocredit: Canva

Kategorien
Allgemeinmedizin Diagnostik Digital Health Gesundheitsökonomie Technologie Wissenschaft

Das Blutbild ist so individuell wie ein Fingerabdruck

Die Zusammensetzung der Moleküle in unserem Blut ist einzigartig, vergleichbar zu einem Fingerabdruck eines Menschen. Verändert sich jedoch der Mix der Moleküle im Organismus könnte dies ein Hinweis darauf sein, dass er erkrankt ist. Voraussetzung einer solchen Diagnose ist es aber, vorab zu wissen, ob der so genannte „molekulare Fingerabdruck“ eines Menschen im gesunden Zustand zuvor über längere Zeit stabil war.

Eine solche Langzeitstabilität bei gesunden Personen hat nun ein deutsches Forscherteam anhand von Fourier-Transform Infrarotmessungen (FTIR) nachgewiesen. Die Forscher zeigten, dass die molekulare Zusammensetzung im Blut einzelner gesunder Personen über mehrere Monate stabil war und sogar individuell zugeordnet werden konnte. „Diese bisher unbekannte zeitliche Stabilität einzelner biochemischer Fingerabdrücke bildet die Grundlage für künftige Anwendungen des blutbasierten Infrarot-Spektral-Fingerabdrucks als verlässliche Art der Gesundheitsüberwachung,“ freut sich das Team „Broadband Infrared Diagnostics“ (BIRD) um die Biologin Mihaela Žigman, LMU München.

Fourier-Transform Infrarotmessungen, die mit konventionellem Licht arbeiten, könnten künftig von Infrarotlaser-basierten Messungen abgelöst werden. Diese Art der Analyse von Molekülen im Blut wäre aufgrund der enormen Stärke des Laserlichts noch exakter als die bisher verwendete FTIR-Methode und könnte auch ganz geringe Mengen von spezifischen Molekülen nachweisen. An entsprechenden Lasertechnologien wird bereits gearbeitet.
Damit besteht die Möglichkeit von wiederholten, minimal-invasiven Messungen von blutbasierten Infrarot-Fingerabdrücken zur zukünftigen Überwachung des menschlichen Gesundheitszustands und damit zur Früherkennung von Krankheiten.

Referenz:
Ludwig-Maximilians-Universität München, Max-Planck-Institut (MPQ)
Stability of person-specific blood-based infrared molecular fingerprints opens up prospects for health monitoring, Nature Communications 2021; https://www.nature.com/articles/s41467-021-21668-5

#blutbild #gesundheitsüberwachung #monitoring #screening #infrarotlaser #gesundheit #molekularerfingerabdruck #medizin #medimpressions

Fotocredit: Canva

Kategorien
Diagnostik Digital Health Molekulare Medizin Onkologie Personalisierte Medizin Technologie Wissenschaft

Brustkrebstherapie: Mathematik als Entscheidungshilfe

Die präzise Therapiewahl bei Brustkrebs hängt entscheidend vom Status der Hormonrezeptoren (für Östrogen und Progesteron) ab. Deren übliche Bestimmung mittels Immunohistochemie (IHC) hat eine gewisse Fehlerrate, die durch Hinzunahme von Genomdaten gesenkt werden kann. Daraus ergeben sich jedoch auch widersprüchliche Befunde, die die Wahl der richtigen Therapie erschweren. In diesen Fällen könnten mathematische Modelle die Entscheidungsfindung deutlich verbessern, ergab eine Studie der Universität Wien an über 3700 Patientinnen.

Die Methodik ist weit über Brustkrebs hinaus anwendbar, und kann überall, wo aus zahlreichen Befunden gleichzeitig Folgerungen zu ziehen sind, eingesetzt werden. Wolfgang Schreiner (CeMSIIS) vergleicht das System mit selbstfahrenden Autos: „Diese prüfen durch Sensoren, ob freie Fahrt möglich ist. Dabei kann ein Sensor ein Hindernis wahrnehmen und eine Notbremsung anfordern. Ein anderer Sensor erkennt keine Gefahr. Was ist dann zu tun? Es gibt zwei mögliche Fehlentscheidungen, und jede ist auf andere Weise riskant: Wird nicht gebremst, passiert ein möglicherweise schwerer Unfall. Bremst der Wagen unnötig, riskiert man einen Auffahrunfall.“ Analog dazu ist die Situation bei der Therapiewahl für Krebspatientinnen, die auf Status der Hormonrezeptoren abgestimmt wird. Eine falsche Entscheidung (Hormon- oder Chemotherapie) würde zu vermeidbaren Nebenwirken führen, im schlimmsten Fall zum Vorenthalten einer lebensrettenden Therapie.

Die Stärke des mathematischen Modells besteht darin, dass sie nicht nur einen einzigen Faktor, nämlich die Wahrscheinlichkeit eines Ereignisses (z.B. Rezeptor-positiv), sondern auch die Wahrscheinlichkeiten für andere Möglichkeiten (möglicherweise positiv) und (sicher nicht Rezeptor-positiv) mitberechnet. Das Modell hat den Vorteil, dass es „selbst merkt,“ wenn es unsicher ist und liefert dann das Ergebnis „unentscheidbar“. Eine wichtige Information für den Arzt.

Referenz:
MedUni Wien
Decision theory for precision therapy of breast cancer, Sci Rep 2021, 11:4233; https://www.nature.com/articles/s41598-021-82418-7

#brustkrebs #entscheidungstheorie #rezeptor #therapie #diagnose #ihc #medizin #medimpressions

Fotocredit: Canva