Kategorien
Allgemeinmedizin Ernährung Immunologie Wissenschaft

Zuviel Kochsalz bremst die Fresszellen

Zuviel Kochsalz kann nicht nur den Blutdruck in die Höhe treiben, sondern auch den Energiehaushalt von Immunzellen empfindlich stören und ihre Funktionsfähigkeit beeinträchtigen, warnt ein internationales Forscherteam.

Dass erhöhte Natriumkonzentrationen im Blut sich sowohl auf die Aktivierung als auch die Funktion patrouillierender Monozyten, der Vorläuferzellen der Makrophagen, auswirkt, ist seit 2015 bekannt. Jetzt weiß man auch, wie das geschieht. Setzt man Immunzellen einer erhöhten Salzkonzentration aus, zeigen sich nach drei Stunden erste Veränderungen. Die Atmungskette wird unterbrochen: die Zellen produzieren weniger ATP und verbrauchen weniger Sauerstoff. ATP ist der universelle Kraftstoff aller Zellen. Er liefert Energie für die „chemische Arbeit“ – die Synthese von Proteinen und anderen Molekülen – für Muskelkraft und die Regulation des Stoffwechsels. Gewonnen wird ATP in den Mitochondrien, den „Kraftwerken“ der Zelle. Wird ihre Aktivität gebremst, reifen Monozyten anders aus und sie können ihrer Aufgabe, Krankheitserreger aufzuspüren und zu beseitigen, nur eingeschränkt nachgehen.

In weiteren Untersuchungen an männlichen Probanden, zeigte sich der dämpfende Einfluss auf die Mitochondrien bereits nach einmaligem Pizzagenuss (10g Salz). Wie lange der Effekt anhält und ob es bei weiterer Salzzufuhr zu Akkumulationseffekten kommt, muss noch untersucht werden. Ebenso, ob dieser Mechanismus auch bei anderen Zelltypen durch Salz beeinflussbar ist. Das ist sehr wahrscheinlich, denn Mitochondrien finden sich nicht nur in Immunzellen, sondern in fast jeder Körperzelle, besonders viele finden sich in Muskel-, Nerven-, Sinnes- und Eizellen.

Ernährungsgesellschaften empfehlen Erwachsenen übrigens nicht mehr als fünf bis sechs Gramm Kochsalz pro Tag.

Referenz:
MDC, Charité Berlin; Freie Universität Berlin, Uni Regensburg, Uni Diepenbeek, Uni Bonn
Salt transiently inhibits mitochondrial energetics in mononuclear phagocytes, Circulation 2021; https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.120.052788

#kochsalz #nacl #mitochondrien #salz #atp #immunzellen #mitochondrien #ernährung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Infektiologie Interne Medizin Pneumologie Virologie Wissenschaft

SARS-CoV-2 liebt´s cool

SARS-CoV-2, das Virus, das COVID-19 verursacht, hat weltweit zu über 125 Millionen Ansteckungen und 2.7 Millionen Todesfällen geführt. Es ist ein enger Verwandter von SARS-CoV, einem anderen Coronavirus, das in den Jahren 2002-2003 zu 8’400 Ansteckungen und 800 Todesfällen führte.

Die Viren ähneln sich in ihrem genetischen Aufbau und benutzen auch denselben Rezeptor, um menschliche Zellen zu infizieren. Trotzdem gibt wichtige Unterschiede zwischen den beiden: SARS-CoV führt zu einer schweren Erkrankung und Entzündung der unteren Atemwege – und infizierte Personen sind erst nach dem Auftreten von Symptomen ansteckend. SARS-CoV-2 bevorzugt die oberen Atemwege (Nasenhöhle, Rachen, Luftröhre) und kann leicht von einer Person zur anderen übertragen werden, bevor Krankheitssymptome auftreten.

Um die Unterschiede zwischen beiden Virusstämmen herauszuarbeiten, haben Forschende Kulturen von menschlichen Atemwegszellen verwendet, um so einen künstlichen Atemtrakt nachzubauen. In diesem offenbarte sich, dass die Umgebungstemperatur eine wichtige Rolle spielt. SARS-CoV-2 vermehrte sich auch rege bei 33°C, das entspricht etwa der Temperatur des oberen Atemwegstrakts. SARS-CoV hingegen bevorzugt höhere Inkubationstemperaturen.

Dies könnte erklären, warum sich SARS-CoV-2 bei niedrigeren Temperaturen effizienter ausbreitet. Bei 37°C, wie sie in den unteren Atemwegen herrschen, wird hingegen die angeborene Immunantwort der Epithelzellen stärker stimuliert und das Virus effizienter bekämpft, so dass es zu einer überschießenden Immunreaktion kommen kann. Hohe Entzündungswerte wiederum lösen Gewebeschäden aus und beschleunigen das Fortschreiten der Krankheit. Ein Phänomen, das bei schweren COVID-19-Fällen zu beobachten ist.

Referenz:
Universität Bern
Disparate temperature-dependent virus – host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium. PLOS Biology 2021, https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001158

#sars-cov-2 #sars #covid19 #pandemie #verbreitung #temperatur #atemwege #medizin #medimpressions

Fotocredit:Canva

Kategorien
Diagnostik Entwicklungsbiologie Gynäkologie Immunologie Reproduktionsmedizin Wissenschaft

Fresszellen bei Embryonen identifiziert

In einem vollständig entwickelten Menschen, Zebrafisch oder einer Maus ist es die Aufgabe von „Fresszellen“ (Makrophagen) des Immunsystems, abgestorbene Zellen zu beseitigen. Allerdings hat ein neu geformter Embryo noch kein Immunsystem, geschweige denn spezialisierte Fresszellen. Er besteht im Wesentlichen aus sich schnell teilenden Zellen. Die raschen Teilungsvorgänge machen ihn auch anfällig für Zellfehler, so die Forscher Verena Ruprecht und Stefan Wieser vom Barcelona Institute of Science and Technology.  Solche Fehler bei der Teilung sind wahrscheinlich der Hauptgrund, dass sich manche Embryos vor der Einpflanzung (Implantation) nicht richtig entwickeln, sowie für Fehlgeburten.

Das erste spezialisierte Gewebe, das sich in einem Embryo bildet, ist die Außenhaut (Epithel). Wie die Forscher nun herausfanden, sind es auch diese Zellen, die während des schnellen Wachstums die Aufgabe der Immunzellen übernehmen. Wie später die Makrophagen erkennen sie sterbende Zellen daran, dass diese einen Fettstoff (Phosphatidylserin) an der Außenseite präsentieren, anstatt ihn an der Innenseite der Zellmembran zu verstecken. Die Epithelzellen formen daraufhin Fortsätze an der Oberfläche und reichen die kaputten Zellen weiter, um die Beseitigung der sterbenden Zellen zu beschleunigen. Dann fressen sie diese schließlich so auf, wie es die spezialisierten Immunzellen später ebenfalls tun.

In Zukunft könnte man nach einer künstlichen Befruchtung die Außenseite der Embryos nach solchen Fressvorgängen untersuchen, meint Ruprecht. Da sie einen Hinweis auf mögliche Probleme geben: „Es wäre eine nicht-invasive Methode, um zu erkennen, ob in einem Embryo Zelltod stattgefunden hat, der wiederum ein Hinweis auf Zellfehler und Probleme bei der Zellteilung ist.“

Referenz: BIST
Pressemeldung Science APA, 29.3.2021; Embryo-Außenhaut erkennt und vernichtet sterbende Zellen; Cooperative epithelial phagocytosis enables error correction in the early embryo, Nature 2021; https://doi.org/10.1038/s41586-021-03200-3

#embryonalentwicklung #embryo #immunzellen #makrophagen #fresszellen #reproduktionsmedizin #immunsystem #medizin #medimpressions

Fotocredit: Canva

Kategorien
Immunologie Nephrologie Onkologie Personalisierte Medizin Wissenschaft

Leberkrebs: Bei wem wirkt die Immuntherapie?

Weltweit ist Leberkrebs die vierthäufigste Krebstodesursache. Bei fortgeschrittener Erkrankung stehen zwar verschiedene Therapien zur Verfügung, die das Tumorwachstum aber meist nur vorübergehend aufhalten können. Immuntherapien (Checkpoint-Inhibitoren) schlagen bei etwa einem Viertel der Fälle mit Erfolg an. Bei welchen Patienten diese Behandlung anspricht, war bislang unklar.

Wissenschaftler fanden nun heraus, dass Leberkrebs, der durch chronisch-entzündliche Fettlebererkrankung ausgelöst wurde, nicht auf diese Therapie anspricht. Zu viele Kalorien, zu wenig Bewegung und ein zu hohes Körpergewicht führen zu einer Fettleber. Die wiederum kann eine nicht-alkoholbedingte Leberentzündung (NASH) zur Folge haben – eine Brutstätte für Leberkrebs.
Dies lässt sich auch in Mäusen beobachten. Bei übergewichtigen Tieren fanden Forscher eine außergewöhnlich hohe Anzahl bestimmter T-Zellen. Diese schützten die Tiere jedoch nicht, wie erwartet, vor der Entwicklung von Leberkrebs, sondern verschlimmerten die Entzündung und förderten die Krebsentstehung. Noch weiter stieg die Zahl der schädlichen Zellen an, wenn NASH-Mäuse mit einem Checkpoint-Inhibitor behandelt wurden.

Dass die Befunde nicht nur für fettleibige Mäuse relevant sind, zeigte eine Analyse von verschiedenen Patientenkohorten. In den erkrankten Lebern fanden die Forscher T-Zellen, die in ihrem Profil mit den autoaggressiven T-Zellen der NASH-Mäuse übereinstimmten. Plus, in der Gruppe der virusbedingten Tumoren verbesserten die Checkpoint-Inhibitoren das Krebsüberleben. Patienten, die an NASH-bedingtem Leberkrebs erkrankt waren, profitierten nicht. Im Gegenteil, ihre Überlebenszeit blieb deutlich hinter der von identisch behandelten Patienten mit virusinduziertem Leberkrebs zurück.

Referenz:
DKFZ Heidelberg
NASH precludes anti-tumor surveillance in immunotherapy-treated hepatocellular carcinoma, Nature 2021, DOI: 10.1038/s41586-021-03362-0
Auto-aggressive CXCR6+ 1 CD8 T cells cause liver 2 immune pathology in NASH, Nature 2021; DOI: 10.1038/s41586-021-03362-0

#krebs #leberkrebs #immuntherapie #nash #fettleber #immunologie #krebsbehandlung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Allgemeinmedizin Angiologie Gynäkologie Hämatologie Immunologie Interne Medizin Wissenschaft

Auslöser für Autoimmunerkrankung (APS) entdeckt

Das Antiphospholipid-Syndrom (APS) ist eine Autoimmunerkrankung, bei der das Immunsystem fälschlicherweise Antikörper gegen körpereigene Bestandteile bildet. Sie richten sich gegen Blutzellen und Gefäßwandzellen was zu einer erhöhten Gerinnungsneigung des Blutes führt. Menschen mit APS neigen zu Blutgerinnseln (Thrombosen), die in der weiteren Folge zu Komplikationen wie Schlaganfall, Herzinfarkt oder Lungenembolien führen können. Bei einer Schwangerschaft ist das Risiko für eine Fehlgeburt deutlich erhöht.

APS-Antikörper werden bei 2-5% der Bevölkerung im Zusammenhang mit Autoimmunerkrankungen und chronischen Infektionen gefunden. Frauen sind etwa fünfmal häufiger betroffen sind als Männer, wobei APS als eigenständiges Krankheitsbild oder im Rahmen einer anderen Erkrankung (bspw. Lupus erythematodes) auftritt.
Mainzer Forscher deckten nun auf, dass alle krankheitsauslösenden Effekte primär durch die Bindung der Antiphospholipid-Antikörper an eine einzige Zielstruktur in den Blutgefäßen hervorgerufen werden, dem Protein-Lipid-Komplex aus dem Protein EPCR (Endothel-Protein-C-Rezeptor) und dem Lipid Lysobisphosphatidsäure (LBPA).
Binden APS-Antikörper daran, aktiviert das komplexe zelluläre Prozesse, die zu einer vermehrten Blutgerinnung und der Produktion des Botenstoffs Interferon-α führen. Daraufhin vermehren sich wiederum die B-Lymphozyten, welche neue Antiphospholipid-Antikörper produzieren und die Autoimmunreaktion weiter verstärken.

Diese bisher unbekannte Interaktion zwischen Immunsystem und Blutgerinnung bietet auch einen vielversprechenden Behandlungsansatz: Es gelang jetzt auch, einen Antikörper zu identifizieren, mit dem sich der Protein-Lipid-Komplex so blockieren lässt, dass die Effekte der Antiphospholipid-Antikörper verhindert werden und Autoimmunreaktionen ausbleiben.

Referenz:
Johannes Gutenberg-Universität, Mainz; Scripps Research, La Jolla
Lipid presentation by the protein C receptor links coagulation with autoimmunity, Science 2021; https://science.sciencemag.org/content/371/6534/eabc0956

#APS #autoimmunerkrankung #thrombose #fehlgeburt #immunsystem #blutgerinnung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Chirurgie Immunologie Interne Medizin Wissenschaft

Fresszellen sorgen für Verwachsungen im Bauchraum

Verwachsungen im Bauchraum, die etwa nach Operationen entstehen, haben oft schwerwiegende Folgen. Sie können chronische Schmerzen verursachen, zu Unfruchtbarkeit führen und müssen oft erneut operiert werden. Wie es zu diesen Adhäsionen kommt, haben Wissenschaftler nun enträtselt. Es wurde bereits vermutet, dass bei der Entstehung spezielle Immunzellen, sogenannte Makrophagen (Fresszellen), eine entscheidende Rolle spielen. Dies konnte jetzt bestätigt werden.

Den Forschern gelang es, ein neues Mikroskopiesystem zu entwickeln, um die Makrophagen sozusagen ’in flagranti’ dabei zu filmen, wie sie Formen bilden, die dann zu den Verwachsungen führen. Fresszellen befinden sich in der Bauchhöhle in der sogenannten peritonealen Flüssigkeit, dem ’Schmiermittel’ zwischen dem Bauchfell, der inneren Auskleidung der Bauchwand, und einem ähnlichen Überzug der Organe in der Bauchhöhle. In dieser Flüssigkeit schwimmen sie frei umher, beseitigen Krankheitserreger und versiegeln Verletzungen im Bauchraum. Dazu verklumpen sie innerhalb von Minuten zu Gerinnsel-ähnlichen Strukturen. Was bei kleineren Verletzungen gut funktioniert, wird aber bei großen Verletzungen zum Problem. Die Fresszellen geraten außer Kontrolle – die Gerinnsel hören nicht auf zu wachsen und bilden lange Stränge, die zu Verwachsungen führen.

Die Forschenden stellten aber auch fest, dass wenn die entsprechenden Rezeptoren im Mausmodell blockiert werden, dies zu weniger Verwachsungen führt. Der entsprechende Wirkstoff wurde bereits zum Patent angemeldet. Künftig könnten Patienten etwa vor Operationen ein Medikament erhalten, das die Reaktion der Makrophagen unterdrückt und Verwachsungen verhindert. Der entdeckte Mechanismus könnte zudem nicht nur bei Verletzungen, sondern auch Erkrankungen wie etwa Bauch-Tumoren eine Rolle spielen.

Referenz:
Universität Bern, University of Calgary
Primordial GATA6 macrophages function as extravascular platelets in sterile injury, Science 2021; https://science.sciencemag.org/content/371/6533/eabe0595

#makrophagen #fresszellen #verwachsungen #operation #chirurgie #gerinnsel #immunologie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Immunologie Neurologie Wissenschaft

Impfen gegen Multiple Sklerose?

Eine aktuelle Studie zieht gerade viel Aufmerksamkeit auf sich, denn wenige Wochen nach der Einführung der ersten mRNA-basierten Corona-Impfstoffe wird von einer mRNA-Impfung gegen Multiple Sklerose (MS) berichtet.

Anders als bei der Corona-Impfung soll aber nicht das fremde Antigen bekämpft werden, sondern das körpereigene Immunsystem wieder an entzündungsauslösende Proteine (Autoantige gegen körpereigene Strukturen) gewöhnt werden. Das Prinzip ist vergleichbar mit der Desensibilisierung gegen Allergien (z. B. bei Pollenallergikern). Dabei wird durch eine gezielte Zufuhr des auslösenden Stoffes die immunologische Überempfindlichkeit abgebaut, das Immunsystems lernt, das Allergen wieder zu tolerieren.

Forschern ist es an einem MS-Mausmodell gelungen, durch die kontrollierte Zufuhr des auslösenden Autoantigens (ein Myelinprotein) die autoimmune Gehirn- und Rückenmarksentzündung (Enzephalomyelitis) zu verhindern bzw. sogar rückgängig zu machen. Im Ergebnis konnte in mehreren MS-Mausmodellen die Erkrankung erfolgreich unterdrückt und eine Demyelinisierung (Angriff auf die Isolierschicht der Nervenfasern) verhindert werden; erkrankte Tiere erholten sich.

Dennoch handelt es sich nicht um eine greifbare Therapieoption, die am Menschen schnell umgesetzt werden kann. Die Entwicklung mit dem Ziel, das Immunsystem „toleranter“ zu machen, ist komplexer als der Ansatz, das Immunsystem gegenüber einem Krankheitserreger auf Angriff zu trimmen. Aber die Entwicklung dieses Grundprinzips belegt zumindest das hohe Innovationspotenzial dieses Forschungszweigs und könnte ein erster wichtiger Schritt für die Entwicklung einer zielgerichteten Therapie sein.

Referenz:
Universität Mainz
Pressemeldung Deutsche Gesellschaft f. Neurologie: Erste tierexperimentelle Daten zur mRNA-Impfung gegen Multiple Sklerose; A noninflammatory mRNA vaccine for treatment of experimental autoimmune encepha-lomyelitis, Science 2021; 371: 145–153, https://science.sciencemag.org/content/371/6525/145.editor-summary

#multiplesklerose #ms #impfung #desensibilisierung #immunsystem #mRNA #behandlung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Infektiologie Interne Medizin Virologie Wissenschaft

Erst Corona, dann Diabetes?

Bei Patienten mit COVID-19-Erkrankung, gibt es immer wieder Verläufe, bei denen auch die Regulation des Blutzuckerspiegels gestört ist. So treten häufiger Symptome auf, wie sie typischerweise bei Diabetes mellitus vom Typ1 zu finden sind. Die Symptome reichen von Hyperglykämie bis hin zu einer Ketoazidose (Übersäuerung des Blutes). Studien berichten über Verschlechterungen bekannter Diabetes mellitus Erkrankungen, aber auch über Fälle von neu aufgetretenem Diabetes nach durchgemachter COVID-19 Erkrankung.

Eine deutsche Arbeitsgruppe untersuchte, wie es bei COVID-19-Patienten zu diesen Diabetes-typischen Symptomen kommen könnte. Dafür haben die Forschenden Gewebe aus der Bauchspeicheldrüse (Pankreas) mit SARS-CoV-2 in Kontakt gebracht und herausgefunden, dass sich die sogenannten Langerhans‘schen Inseln mit dem Coronavirus infizieren lassen.

Die Viren dringen in die Zellen ein und setzen neue infektiöse Viruspartikel frei. Daraufhin verändert sich infiziertes insulinproduzierendes Gewebe in Form und Funktion entscheidend. So reduziert sich etwa die Anzahl der Insulin-Granula, in denen Beta-Zellen das Insulin speichern. Das wiederum stört die Ausschüttung dieses lebenswichtigen Hormons.

Bei Autopsien an verstorbenen COVID-19-Patienten zeigte sich, dass selbst nachdem in der Lunge keine Virusproteine mehr zu finden waren, diese im Pankreas noch nachgewiesen werden konnten. Dies wiederum deutet darauf hin, dass das neuartige Coronavirus nicht nur außerhalb der Lunge aktiv ist und andere Organe infiziert, sondern dass diese Infektionen auch häufiger und andauernder sind als bisher angenommen. Ob die auftretenden Beeinträchtigungen der Insulinproduktion langfristig zu einer Diabetes-Erkrankung führen, müssen nun weitere Studien klären.

Referenz:
Universität Ulm
SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas; Nature Metabolism 2021; https://www.nature.com/articles/s42255-021-00347-1

#covid-19 #diabetes #insulinproduktion #sars-cov-2 #pankreas #coronaviren #langerhanszellen #medizin #medimpressions

Fotocredit: Canva

Kategorien
Immunologie Infektiologie Psychiatrie Wissenschaft

Gehirn-Immunzellen können Depressionen verursachen

„Es gibt eine Gruppe von depressiven Menschen, die ein klinisch auffälliges Entzündungsprofil zeigt, ohne dass es dafür eine Erklärung gibt, wie etwa eine akute Infektion“, berichtet der österreichische Psychologe Michael Fritz. Bisher war nicht zu klären, ob die Entzündungsreaktionen als Ursache des depressiven Verhaltens in Frage kommen oder die Mikroglia (Immunzellen des Gehirns) als Folge der Depressionen aktiviert werden.

Seine Untersuchungen am Tiermodell, durchgeführt an der Linköping Universität in Schweden, ergaben nun, dass aktivierte Mikrogliazellen eine große Menge an Entzündungsbotenstoffen aussenden. Einer dieser Botenstoffe ist Interleukin-6. Dieser steigt laut Studien bei depressiven Patienten umso höher an, je stärker die Suizid-Intention ist. Neben Interleukin-6 schütten die aktivierten Mikrogliazellen auch das Hormon Prostaglandin E2 aus und reduzieren damit die Erregbarkeit der umliegenden Nervenzellen im Gehirn. Die Tiere zeigten daraufhin depressives Verhalten. Wenn die Forscher die Mikrogliazellen jedoch wieder hemmten, war dies nicht mehr der Fall.

Bei Menschen könnten die Mikroglia etwa durch virale Entzündungen, chronische Erkrankungen oder Krebs aktiviert werden, so Fritz: „Vor allem Infektionen, die eher mild verlaufen sind mit einer Manifestation von Depression im späteren Leben assoziiert.“ Dazu gehören etwa Infektionen mit Herpes-simplex-Viren, die Fieberblasen verursachen, Epstein-Barr-Viren, die Krebs auslösen können, und Feuchtblattern-Viren (Varizella-Zoster-Viren). Warum solche Infektionen bei manchen zu Depressionen führen, in der großen Mehrzahl der Menschen aber nicht, muss wissenschaftlich erst geklärt werden.

Referenz:
Linköping University; Nat Inst Drug Abuse, Baltimore; University of Barcelona
Pressemeldung Science APA 27.1.2021; https://science.apa.at/power-search/2251350191652050077
Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons; Immunity 2021, https://doi.org/10.1016/j.immuni.2020.12.016

#depression #gehirn #neurotransmitter #infektion #mikroglia #verhalten #viren #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Hämatologie Immunologie Molekulare Medizin Wissenschaft

Mit „Hemibodies“ gegen das Multiple Myelom

Eine der Hürden bei der Therapie des Multiplen Myeloms, einer bösartigen Erkrankung des Knochenmarks, ist die Unterscheidung zwischen den Tumor- und den gesunden Zellen des Körpers. Diese „Unschärfe“ kann bei der Behandlung von Patienten, die an dieser Krebserkrankung leiden, drastische Folgen haben: Es kann zu teils schweren, mitunter lebensbedrohlichen Nebenwirkungen kommen. Zur Lösung dieser Misere wurden Hemibodies entwickelt.

Diese Antigen-Fragmente sind sehr spezifisch und binden an bestimmten Oberflächenfragmenten von Tumorzellen. Das besondere Prinzip dieser neuen Immuntherapie besteht darin, dass sich ihre Wirkung erst dann entfaltet, wenn zwei Hemibodies auf der Oberfläche von Tumorzellen zu einer funktionalen Einheit zusammenfinden. In der Behandlung des multiplen Myeloms wurden zwei bestimmte Antigene (SLAMF7, CD38) als Zielmoleküle für die Hemibodies ausgewählt. Diese kommen beide häufig auf der Oberfläche von Myelom-Zellen vor. Jedes dieser „Targets“ für sich alleine genommen ist allerdings nicht sonderlich spezifisch, sie finden sich auf vielen Zellen des Körpers. In Kombination sind sie jedoch hochspezifisch für die Tumorzellen. Werden beide Antikörper-Fragmente injiziert, binden sie sich getrennt ans Zielmolekül, finden aber durch die räumliche Nachbarschaft zusammen. Erst dann sind sie in der Lage, T-Zellen festzuhalten und zu aktivieren, so dass Krebszellen gezielt zerstört werden können.

Sowohl im Reagenzglas als auch im Tiermodell zeigt sich, dass durch die neue Methode schwere Nebenwirkungen zuverlässig vermieden werden können, sagt Untersuchungsleiterin Maria Geis, Universität Würzburg. Mitautor Thomas Bumm ergänzt: „Unter dem Strich ist damit der Weg frei, Hemibodies zu einer effektiven und hochspezifischen Immuntherapie des Multiplen Myeloms weiterzuentwickeln.“

Referenzen:
Universität Würzburg
Combinatorial targeting of multiple myeloma by complementing T cell engaging antibody fragments. Commun Biol 2021; 4:44;  https://www.nature.com/articles/s42003-020-01558-0

#multiplesmyelom #lymphom #hemibodies #antikörper #immuntherapie #krebs #medizin #medimpressions

Fotocredit: Canva