Kategorien
Diagnostik Epigenetik Hämatologie Onkologie Wissenschaft

Neuer Faktor der Leukämieentstehung identifiziert

Trotz der jüngsten Fortschritte bei den Therapieoptionen ist die Gesamtprognose für die meisten PatientInnen, die an akuter myeloischer Leukämie (AML) erkranken, schlecht. Daher besteht ein dringender Bedarf an einem besseren Verständnis der molekularen Mechanismen der Leukämie-Entstehung und -Erhaltung, um neuartige Therapien zu entwickeln. WissenschaftlerInnen des Instituts für Medizinische Biochemie der Vetmeduni Vienna lieferten nun neue potenzielle Ansatzpunkte zur Behandlung dieser Krebserkrankung.
In ihren Untersuchungen erwies sich das RNA-bindende Protein MUSASHI-2 (MSI2) als eines der Proteine, die zur Entstehung von Leukämizellen beitragen.

10 bis 15 % aller an AML erkrankten PatientInnen weisen Mutationen in einem bestimmten Gen (CEBPA-Gen) auf, wovon die häufigsten Veränderungen zu einer verkürzten Isoform (p30) dieses Gens führen. Das Wissenschaftsteam wies nun nach, dass genau diese p30-induzierten Veränderungen an 33 weiteren Genen beeinflussen, die in Folge an der Entstehung von Leukämien mitwirken. Als kritisches Zielgen von p30 identifizierten sie das RNA-bindende Protein MUSASHI-2 (MSI2).

„AML-PatientInnen mit CEBPA-Mutationen exprimierten hohe MSI2-Spiegel, und MSI2 war für das Überleben von murinen (Zellen der Maus) und humanen AML-Zellen mit CEBPA-Mutationen erforderlich“, so Studienerstautorin Elizabeth Heyes vom Institut für Medizinische Biochemie der Vetmeduni Vienna. Wird das Protein jedoch ausgeschalten (MSI2-Knockdown), verzögert das die Entstehung einer akuten myeloischen Leukämie. MSI2 könnte daher ein potenzielles neues Behandlungsziel bei PatientInnen mit CEBPA-mutierter AML darstellen.

Referenz:
VetMedUni Wien
Identification of gene targets of mutant C/EBPα reveals a critical role for MSI2 in CEBPA-mutated AML, Leukemia 2021; 
https://www.nature.com/articles/s41375-021-01169-6

#leukaemie #akutemyeloischeleukaemie #aml #krebsentstehung #genetik #treibermutation #msi2 #medizin #medimpressions

Fotocredit: Canva

Kategorien
Molekulare Medizin Neurologie Pädiatrie Wissenschaft

Neuroblastom: Welcher Faktor begünstigt Rückfälle?

Neuroblastome sind nach Hirntumoren die häufigsten soliden Tumoren bei Kindern und entstehen aus unreifen Vorläuferzellen des Nervensystems. In einigen Fällen bilden sich Neuroblastome ohne jegliche Therapie komplett zurück. Bei etwa der Hälfte der Patienten kann jedoch auch eine hochintensive Therapie das Wachstum nicht verhindern.

Bösartige Neuroblastome nutzen einen Trick, um unendlich teilungsaktiv zu bleiben: Sie verlängern ihre Chromosomenenden (Telomere), so dass die Zellen quasi „unsterblich“ werden. Auf molekularer Ebene machen Krebszellen das auf zwei Wegen, sie überaktivieren das Enzym Telomerase oder sie verlängern die Chromosomenenden durch Neuanordnung ihrer Telomerabschnitte (alternativer Mechanismus). In beiden Fällen haben die jungen Patienten eine schlechte Prognose.

Das bestätigten auch die Daten von 760 Neuroblastom-Patienten einer eben publizierten Studie. Sie zeigt, dass bei fast der Hälfte der Patienten nicht die Überaktivierung der Telomerase, sondern der alternative Mechanismus für die Telomerverlängerung verantwortlich ist. Die Wissenschaftler untersuchten auch erstmals, welche molekularen Prozesse diesen speziellen Verlängerungsmechanismus begünstigen.

Die Erkenntnisse daraus könnte man nutzen, um bessere Therapien zu entwickeln. Bisher werden die jungen Patienten alle mit den gleichen Chemotherapie-Protokollen behandelt. Diese Therapien greifen vor allem schnell wachsende Krebszellen an. Krebszellen mit dem alternativen Mechanismus wachsen aber eher langsam, sind extrem widerstandsfähig und kehren wieder. Im nächsten Schritt wird nun daran gearbeitet, eine spezifische Therapie für diese Tumoren zu entwickeln, die vielleicht auch bei anderen Krebsarten, die diesen Telomer-Verlängerungsmechanismus nutzen, zum Einsatz kommen könnte.

Referenz:
DKFZ, KiTZ, Heidelberg; Universität HD
Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome; Nature Communications 2021; https://www.nature.com/articles/s41467-021-21247-8

#neuroblastom #tumor #kinder #therapie #telomere #krebszellen # #medizin #medimpressions

Fotocredit: Canva

Kategorien
Diagnostik Onkologie Tumorbiologie Wissenschaft

Krebszellen „quetschen“ sich durchs Gewebe

Wissenschaftler konnten in Experimenten erstmals nachweisen, wie sich Zellen verformen, um sich in dichten Tumorgeweben zu bewegen und sich zwischen ihren Nachbarzellen durchzuquetschen. Sie stellten fest, dass bewegliche Zellen gemeinsam das Tumorgewebe verflüssigen.

„Diese ersten Beobachtungen eines Phasenübergangs bei menschlichen Tumoren verändern unsere grundlegenden Konzepte der Tumorprogression und könnten die Krebsdiagnose und -therapie verbessern“, meint Mitautor und Biophysiker Josef Käs, der sich seit Jahren mit den physikalischen Eigenschaften von Krebszellen beschäftigt. Die Forschungen haben gezeigt, dass menschliche Tumoren feste und flüssige Zellcluster enthalten, was einen Durchbruch beim Verständnis der Tumormechanik darstellt. Die Resultate bildeten die Grundlage für das erste Verfahren, mit dem sich metastasierende Krebszellen bereits im Tumor nachweisen lassen.

Die Forscher entwickelten den neuen Ansatz in der Lebendmikroskopie von Tumoren, indem sie menschliche Tumorproben direkt nach der Operation fluoreszent färbten und so Zellbewegungen live beobachten konnten. So fanden sie heraus, dass diese entgegen allen bisherigen Erkenntnissen stattfinden und mit starken Kerndeformationen verbunden sind. Sie beobachteten, wie sich Zellen und ihre Kerne buchstäblich durch das Gewebe quetschen, indem sie sich stark deformieren.

Käs: „Zellen in biologischen Geweben verhalten sich ähnlich wie Menschen in einer Bar. Bei geringen Dichten können sie sich frei bewegen. Wenn es jedoch sehr voll ist, wird jede Bewegung schwierig. Aber selbst in einer überfüllten Bar können Sie sich immer noch durchdrücken, wenn Sie sich seitwärts drehen. Genau diesen Effekt sehen wir in Tumorgeweben.“ Im nächsten Schritt wird untersucht, ob die flüssigen Regionen die   Tumoraggressivität vorhersagen können.

Referenz:
Universität Leipzig; Syracuse University, NY
Cell and Nucleus Shape as an Indicator of Tissue Fluidity in Carcinoma, Physical Review X 2021; https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.011033

#tumorphysik #krebs #onkologie #tumor #metastasen #kerndeformation #tumorgewebe #medizin #medimpressions

Fotocredit: Canva

Kategorien
Gesundheitsökonomie Onkologie Wissenschaft

Vitamin D verringert Krebs-Sterberate

Seit einigen Jahren untersuchen Wissenschaftler den Einfluss einer ausreichenden Versorgung mit Vitamin D auf die Prognose zahlreicher Erkrankungen. Zur Frage, wie sich die Vitamin D-Versorgung auf die Sterberaten an Krebs auswirkt, sind in den vergangenen Jahren gleich drei Metaanalysen großer klinischer Studien erschienen. Die Untersuchungen kamen zu einem übereinstimmenden Ergebnis: Um rund 13 Prozent sinkt bei einer Vitamin D-Supplementierung die Krebssterblichkeit – über alle Krebserkrankungen hinweg. Welche biologischen Mechanismen dem zugrunde liegen könnten, ist noch nicht genau geklärt.

Ein Vitamin D Mangel ist in der älteren Bevölkerung und insbesondere bei Krebspatienten weit verbreitet. Der Epidemiologe Hermann Brenner und Kollegen vom DKFZ errechneten nun, welche Kosten durch eine Vitamin D-Supplementierung der gesamten Bevölkerung Deutschlands ab einem Alter von 50 Jahren entstehen würden. Fazit: bei einer Vitamin D-Supplementierung aller Deutschen über 50 Jahre könnten möglicherweise bis zu 30.000 Krebstodesfälle pro Jahr vermieden und mehr als 300.000 Lebensjahre gewonnen werden – bei gleichzeitiger Kostenersparnis.

„In einigen Ländern werden sogar Nahrungsmittel seit vielen Jahren mit Vitamin D angereichert – etwa in Finnland, wo die Sterberaten an Krebs um rund 20 Prozent niedriger sind als in Deutschland,“ so Brenner: „ganz abgesehen davon, dass sich die Hinweise auf weitere positive Gesundheitseffekte einer ausreichenden Vitamin D-Versorgung verdichten, etwa bei den Sterberaten an Lungenerkrankungen.“

Um den eigenen Vitamin D-Spiegel kostenfrei zu verbessern, wird empfohlen, sich bei Sonnenschein im Freien aufzuhalten, zwei- bis dreimal pro Woche für etwa zwölf Minuten. Gesicht, Hände und Teile von Armen und Beinen sollten für diese Zeitspanne unbedeckt und ohne Sonnenschutz sein.

Referenz:
DKFZ
Pressemeldung DKFZ, 11.2.2021; https://www.dkfz.de/de/presse/pressemitteilungen/2021/dkfz-pm-21-07-Vitamin-D-Supplementierung-moeglicher-Gewinn-an-Lebensjahren-bei-gleichzeitiger-Kostenersparnis.php

#vitamind #krebs #sterblichkeit #supplementierung #sonne #gesundheit #lungenkrebs #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Immunologie Molekulare Medizin Onkologie Wissenschaft

Individuelle Krebstherapien gegen Chemokinrezeptoren

CXCR4 ist ein wichtiger Oberflächenrezeptor auf Immun- und Krebszellen. Wenn dieser Chemokinrezeptor in großer Zahl auf Krebszellen zu finden ist, sorgt er unter anderem dafür, dass diese wandern und Metastasen bilden können. Auch bei jeder Entzündung ist CXCR4 mit von der Partie. Der Entzündungsherd setzt Botenstoffe aus der Klasse der Chemokine frei. Diese sorgen in den Lymphknoten dafür, dass Immunzellen sehr viele CXCR4-Antennen ausbilden, sodass Immunzellen den Entzündungsherd finden und dahin wandern können.

Der molekulare Rezeptor hat in den vergangenen Jahren für eine hitzige Debatte unter Experten gesorgt, weil sein Beziehungsstatus Rätsel aufgab. Tritt er als Single auf oder doch als Paar? Die Antwort liefern Untersuchungen des Forscherteams um Ali Isbilir des Max-Delbrück-Centrums für Molekulare Medizin. Der Rezeptor liebt es nämlich unverbindlich: er liegt mal als Single (Monomer), mal als Paar (Dimer) vor.

Wichtig ist diese Erkenntnis nicht nur für die Grundlagenforschung, sondern auch für die Pharmabranche. So konnten die Forscher zeigen, dass bestimmte Arzneien, die als CXCR4-Blocker wirken, eine Paarbildung unterdrücken können. Man nimmt an, dass die CXCR4-Paare schlecht für die Gesundheit sind. Dank einer neu entwickelten Fluoreszenzmethode können nun lebende Krebszellen direkt untersucht werden, so dass CXCR4-Blocker für Paare und Singles eingesetzt und geprüft werden kann, welche wirksamer gegen Tumore sind. So könnten etwa spezifischere Krebsmedikamente mit weniger Nebenwirkungen entwickelt und Krebstherapien individuell und so wirksam als möglich zusammengestellt werden.

Referenz:
MDC Berlin; Helmholtz Gemeinschaft

Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists, PNAS 2021, https://www.pnas.org/content/117/46/29144
Determination of G-protein-coupled receptor oligomerization by molecular brightness analyses in single cells; Nature Protocols 2021, https://www.nature.com/articles/s41596-020-00458-1

#krebs #krebstherapie #personalisiertemedizin #chemokin #rezeptor #onkologie #immunologie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Hämatologie Immunologie Molekulare Medizin Wissenschaft

Mit „Hemibodies“ gegen das Multiple Myelom

Eine der Hürden bei der Therapie des Multiplen Myeloms, einer bösartigen Erkrankung des Knochenmarks, ist die Unterscheidung zwischen den Tumor- und den gesunden Zellen des Körpers. Diese „Unschärfe“ kann bei der Behandlung von Patienten, die an dieser Krebserkrankung leiden, drastische Folgen haben: Es kann zu teils schweren, mitunter lebensbedrohlichen Nebenwirkungen kommen. Zur Lösung dieser Misere wurden Hemibodies entwickelt.

Diese Antigen-Fragmente sind sehr spezifisch und binden an bestimmten Oberflächenfragmenten von Tumorzellen. Das besondere Prinzip dieser neuen Immuntherapie besteht darin, dass sich ihre Wirkung erst dann entfaltet, wenn zwei Hemibodies auf der Oberfläche von Tumorzellen zu einer funktionalen Einheit zusammenfinden. In der Behandlung des multiplen Myeloms wurden zwei bestimmte Antigene (SLAMF7, CD38) als Zielmoleküle für die Hemibodies ausgewählt. Diese kommen beide häufig auf der Oberfläche von Myelom-Zellen vor. Jedes dieser „Targets“ für sich alleine genommen ist allerdings nicht sonderlich spezifisch, sie finden sich auf vielen Zellen des Körpers. In Kombination sind sie jedoch hochspezifisch für die Tumorzellen. Werden beide Antikörper-Fragmente injiziert, binden sie sich getrennt ans Zielmolekül, finden aber durch die räumliche Nachbarschaft zusammen. Erst dann sind sie in der Lage, T-Zellen festzuhalten und zu aktivieren, so dass Krebszellen gezielt zerstört werden können.

Sowohl im Reagenzglas als auch im Tiermodell zeigt sich, dass durch die neue Methode schwere Nebenwirkungen zuverlässig vermieden werden können, sagt Untersuchungsleiterin Maria Geis, Universität Würzburg. Mitautor Thomas Bumm ergänzt: „Unter dem Strich ist damit der Weg frei, Hemibodies zu einer effektiven und hochspezifischen Immuntherapie des Multiplen Myeloms weiterzuentwickeln.“

Referenzen:
Universität Würzburg
Combinatorial targeting of multiple myeloma by complementing T cell engaging antibody fragments. Commun Biol 2021; 4:44;  https://www.nature.com/articles/s42003-020-01558-0

#multiplesmyelom #lymphom #hemibodies #antikörper #immuntherapie #krebs #medizin #medimpressions

Fotocredit: Canva

Kategorien
Molekulare Medizin Neurologie Onkologie Wissenschaft

Neuer Mechanismus schützt vor Krebs und Epilepsie

Das Signalprotein MTOR (Mechanistic Target of Rapamycin) ist ein Sensor für Nährstoffe wie Aminosäuren und Zucker. Wenn genügend Nährstoffe zur Verfügung stehen, kurbelt MTOR den Stoffwechsel an. Fehler in seiner Aktivierung führen jedoch zu ernsten Krankheiten wie Krebserkrankungen, die mit übermäßiger Stoffwechselaktivität, Zellwachstum und -ausbreitung einhergehen. Auch Fehlentwicklungen des Nervensystems, die zu Schwierigkeiten in der Reizverarbeitung, Verhaltensstörungen und Epilepsie führen, können die Folge sein, wenn MTOR fehlgeschaltet ist.

Um Fehler in der Signalverarbeitung zu verhindern, kontrolliert die Zelle seine Aktivität sehr genau. Dies geschieht durch Proteinhemmer, wie dem TSC Komplex. Dieser sitzt gemeinsam mit MTOR an kleinen Strukturen in der Zelle, den sogenannten Lysosomen und hält ihn in Schach.

Forscherteams der Universität Innsbruck und des DKFZ erforschten nun, auf welche Weise der TSC Komplex an Lysosomen bindet. Sie entdeckten, dass die G3BP Proteine (Ras GTPase-activating protein-binding protein) zusammen mit dem TSC Komplex an Lysosomen sitzen. Dort bilden die G3BP Proteine einen Anker, der dafür sorgt, dass der TSC Komplex an die Lysosomen binden kann. Diese Ankerfunktion spielt in Brustkrebszellen eine entscheidende Rolle. Ist die Menge von G3BP Proteinen vermindert, so führt dies zu einer erhöhten MTOR Aktivität und steigert die Ausbreitung der KrebszellenG3BP-Eiweißstoffe könnten daher Marker sein, um personalisierte Therapien zu entwickeln und die Effizienz von Medikamenten, die MTOR hemmen, zu verbessern.

Im Zebrafisch beobachteten die Forschenden Störungen der Gehirnentwicklung, ähnlich einer Epilepsie beim Menschen, wenn G3BP fehlt. Man hofft deshalb, dass Patienten mit neurologischen Erkrankungen, bei denen die G3BP Proteine fehlerhaft sind, ebenfalls von MTOR-gerichteten Wirkstoffen profitieren können.

Referenzen:
Universität Innsbruck; Deutsches Krebsforschungszentrum Heidelberg
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling; Cell 2021; https://doi.org/10.1016/j.cell.2020.12.024

#krebs #epilepsie #mtor #suppressor #wirkstoffe #therapie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Epigenetik Hämatologie Onkologie Wissenschaft

Entstehung der chronisch lymphatischen Leukämie

Chronische Leukämien beginnen häufig schleichend. Erst nach und nach breiten sich weiße Blutzellen oder ihre Vorläufer unkontrolliert im Knochenmark aus, beeinträchtigen dort die normale Blutbildung und wandern in Milz, Leber und andere Organe ein.

Vom häufigsten Typ Blutkrebs bei Erwachsenen, der chronischen lymphatischen Leukämie (CLL), ist die Vorstufe bekannt: die monoklonale B-Zell-Lymphozytose (MBL). Fast jeder Fall einer CLL-Leukämie geht auf eine solche Lymphozytose zurück. Umgekehrt bekommen jedoch pro Jahr nur ein bis zwei Prozent der Lymphozytose-Patienten auch eine Leukämie.

Der Frage, wie beide Erkrankungen zusammenhängen, ging nun ein internationales Forscherteam anhand der Daten von 23 Patienten mit Lymphozytose nach, von denen fünf später eine Leukämie entwickelten. Das Ergebnis legt nahe, dass eine für Krebs charakteristische chemische Signatur der DNA schon in den frühesten Stadien der Lymphozytose vorhanden ist. Die typischen Veränderungen (Änderungen des Methylierungsmusters) am Erbgut bleiben über den gesamten Zeitraum stabil und sogar nach einer erfolgreichen Krebstherapie weiter bestehen. Es scheint, als würden die Weichen für die Krebserkrankung bereits äußerst früh gestellt werden und die charakteristischen chemischen Veränderungen an der DNA könnten also eine Voraussetzung und Treiber für die Entstehung der Krebserkrankung sein“, spekulieren die Forscher.

Für die Therapie hat dies keine unmittelbaren Konsequenzen. Es wird auch weiterhin keinen Grund geben, eine monoklonale B-Zell-Lymphozytose mit klassischen Therapien zu behandeln“, so die Forscher: „die Therapie bringt in diesem Stadium mehr Gefahren mit sich als die Erkrankung selbst. Allerdings könnten diese Erkenntnisse einmal in neuartige Therapien einfließen.“

Referenzen:
Max Planck Institut, Berlin; Dana Farber Cancer Institute, Boston
Pre-neoplastic alterations define CLL DNA methylome and persist through disease progression and therapy; Blood Cancer Discovery 2021; https://bloodcancerdiscov.aacrjournals.org/content/2/1/54

#leukämie #lymphozytose #bzellen #krebs #onkologie #epigenetik #methylierung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Gastroenterologie Onkologie Wissenschaft

Neuer Ansatz zur Therapie von Dickdarmkrebs

Die Entstehung der Krebserkrankung ist komplex: Neben klassischen genetischen Faktoren, die unter bestimmten Bedingungen gesunde Zellen zu Tumorzellen transformieren, stehen auch andere molekulare Faktoren damit im Zusammenhang. Martin Pichler von der MedUni Graz untersuchte insbesondere die sogenannte „dunkle Materie“ des menschlichen Genoms – jenen Großteil der Erbinformation DNA, der nicht-codierend ist, also keine Bauanleitungen für Proteine enthält. Diese sich wiederholende RNA-Abschnitte spielen offenbar eine wichtige Rolle bei der Metastasierung von Dickdarmkarzinom-Zellen.

Gemeinsam mit internationalen Kollegen hat er in Dickdarmkrebszellen eine lange neue Non-Coding RNA (lnc RNA) entdeckt. Diese nach dem Fundort als FLANC bezeichnete RNA, ist in Dickdarmkrebsgewebe signifikant angereichert und führt bei Patienten zu einem deutlich schlechteren Krankheitsverlauf. Das Forscherteam hat nun in Zellkultur und Mausmodellen gezeigt, dass FLANC durch Auslösen oder Verhindern des Zelltodes die Metastasierung der Tumorzellen regulieren kann. Demzufolge könnten Therapeutika, die auf solchen RNA-Abschnitten beruhen, die abgelesenen Informationen bereits auf RNA-Ebene löschen oder modifizieren.

„Zu unserer positiven Überraschung konnten wir einen dramatischen Rückgang der bereits messbaren Metastasen in der Leber nach einigen Behandlungen im Labormodell erkennen“, fasst Pichler die Ergebnisse der bisherigen Versuche zusammen. Die Behandlung im Mausmodell zeigt keine Nebenwirkungen in anderen Organen, wie sie bei RNA-gerichteten Therapeutika manchmal beobachtet werden. Auf Basis dieser Erkenntnisse sollen nun Medikamente gegen Dickdarmkarzinome und weitere Krebserkrankungen entwickelt werden.

Referenzen:
MedUni Graz; MD Anderson Cancer Center, Texas; Kyungpook National University, South Korea
Therapeutic potential of FLANC, a novel primate-specific long non-coding RNA in colorectal cancer, Gut l69:10; https://gut.bmj.com/content/69/10/1818

#dickdarm #krebs #karzinom #therapie #kolonkarzinome #RNA #nichtkodierendeRNA #medizin #medimpressions

Fotocredit: Canva

Kategorien
Genetik Onkologie Wissenschaft

Krebszellen auszuhungern könnte funktionieren

Die Idee, Krebszellen einfach verhungern zu lassen, hatten schon viele Forscher. Jetzt lässt ein neuer Ansatz eines internationalen Wissenschaftlerteams aufhorchen, der diesem Ziel bereits sehr nahekommt. Ein neu entwickelter Wirkstoff lässt Krebszellen aushungern, indem er ihre „Kraftwerke“ – die sogenannten Mitochondrien – angreift.

Lange ging man davon aus, dass das Wachstum von Krebszellen weniger stark vom Beitrag der Mitochondrien abhängt. Diese Lehrmeinung wurde jedoch in den letzten Jahren zunehmend in Frage gestellt. Besonders Krebsstammzellen sind in hohem Maße vom mitochondrialen Stoffwechsel abhängig. Jetzt ist es gelungen, ein potenzielles Krebsmedikament zu entwickeln, das auf die Funktion der Mitochondrien abzielt, ohne schwere Nebenwirkungen zu verursachen und ohne gesunde Zellen zu schädigen. Es hemmt die mitrochondiale RNA-Polymerase (POLRMT), einen Schlüsselregulator der Genaktivität.

Der Hemmstoff verringerte die Lebensfähigkeit von Krebszellen stark und verlangsamte das Tumorwachstum in tumortragenden Mäusen signifikant. „Unsere Daten deuten darauf hin, dass wir Krebszellen im Grunde aushungern und so zum Sterben bringen. Zumindest für eine gewisse Zeit, ohne große Nebenwirkungen. Dies gibt uns ein potenzielles therapeutisches Zeitfenster für die Behandlung von Krebs“, so Mitautorin Nina Bonekamp, MPI Köln. „Ein weiterer Vorteil unseres Hemmstoffs ist, dass wir genau wissen, wo er an POLRMT bindet und was er mit dem Protein macht. Das steht im Gegensatz zu einigen anderen Medikamenten, die sich sogar im klinischen Einsatz befinden. Natürlich ist es faszinierend, sein Potenzial als Krebsmedikament weiter zu verfolgen, aber auch als Modellverbindung, um die zellulären Auswirkungen mitochondrialer Funktionsstörungen und mitochondrialer Erkrankungen besser zu verstehen.“

Referenzen:
Max-Planck-Institut für Biologie des Alterns, Karolinska Institut, Universität Göteborg
Small molecule inhibitors of human mitochondrial DNA transcription, Nature, 2020; https://www.nature.com/articles/s41586-020-03048-z

#krebs #onkologie #krebsbehandlung #mitochondrien #genaktivität #krebsmedikament #medizin #medimpressions

Fotocredit: Canva