Kategorien
Immunologie Infektiologie Intensivmedizin Interne Medizin Wissenschaft

Covid-19: Was die Entzündung vorantreibt

Schwere COVID-19-Verläufe sind nicht allein auf die Infektion durch SARS-CoV-2, sondern ganz wesentlich auf eine entgleiste Immunreaktion zurückzuführen. Ein deutsch -österreichisches Forschungsteam hat jetzt eine zelluläre Stressreaktion identifiziert, die zur Immun-Entgleisung maßgeblich beiträgt: die Seneszenz.

Als programmierter Zellteilungsstopp bewahrt sie den menschlichen Körper davor, dass Krebs entsteht. Seneszente Zellen sondern aber auch entzündungsfördernde Botenstoffe ab, die etwa für Prozesse wie die Wundheilung wichtig sind. Im Übermaß produziert, fördern diese Entzündungsvermittler altersbedingte Krankheiten wie die Gefäßverkalkung. Jetzt zeigte sich, dass auch eine virale Infektion Seneszenz auslösen kann. „Offenbar ist das zelluläre Stressprogramm der Seneszenz ein sehr wichtiger Treiber eines Entzündungssturms, der eine Vielzahl charakteristischer Merkmale der COVID-19-Lungenentzündung, wie Gefäßschädigungen oder Mikrothrombosen, maßgeblich verursacht“, erklärt Soyoung Lee, Erstautorin der Studie. 

 „Diese entzündliche Überreaktion frühzeitig mit spezifischen Wirkstoffen zu unterbrechen, hat in unseren Augen großes Potenzial, eine neue Strategie zur Behandlung von COVID-19 zu werden“, meint auch Teamleiter Clemens Schmitt, Johannes-Kepler Universität Linz.
Das Team untersuchte im Tiermodell bereits den Effekt von vier Wirkstoffen, die gezielt seneszente Zellen angreifen: Navitoclax, Fisetin, Quercetin und Dasatinib.
Alle vier Substanzen – zum Teil allein, zum Teil in Kombination – waren bei Hamstern und Mäusen in unterschiedlichem Maße in der Lage, den Entzündungssturm zu normalisieren und die Lungenschädigung abzuschwächen. Die kombinierte Auswertung zweier kleinerer Studien deutet an, dass eines der Senolytika auch beim Menschen die Wahrscheinlichkeit eines schweren COVID-19-Verlaufs senken könnte.

Referenz:
JKU Linz, Charité Berlin, MDCVirus-induced senescence is driver and therapeutic target in COVID-19, Nature 2021; https://www.nature.com/articles/s41586-021-03995-1

#covid #corona #pandemie #zytokinsturm #entzuendung #senesenz #lunge #medizin #medimpressions

Fotocredit: shutterstock

Kategorien
Biotechnologie Genetik Gynäkologie Onkologie Wissenschaft

Tumore, die sich selbst aus dem Weg räumen

Eine neue Technologie ermöglicht dem Körper, therapeutische Wirkstoffe auf Abruf an genau der Stelle herzustellen, an der sie benötigt werden. Die Innovation könnte die Nebenwirkungen einer Krebstherapie reduzieren und dabei helfen, Covid-Behandlungen besser in die Lunge zu verabreichen.

Forschende der Universität Zürich haben ein weit verbreitetes Atemwegsvirus, genannt Adenovirus, so modifiziert, dass es wie ein trojanisches Pferd funktioniert und Gene für therapeutische Wirkstoffe direkt in Tumorzellen transportiert. Im Gegensatz zur Chemo- oder Strahlentherapie schadet dieser Ansatz den normalen, gesunden Zellen nicht, denn sie verbleiben exakt an der Stelle im Körper, an der sie gebraucht werden, anstatt sich im Blutkreislauf zu verteilen, wo sie gesunde Organe und Gewebe schädigen können. In den Tumorzellen angekommen, dienen die gelieferten Gene als Vorlage für therapeutische Antikörper, Zytokine und andere Botenstoffe, die von den Krebszellen selbst produziert werden und den Tumor von innen heraus eliminieren.

Dank des als SHREAD bezeichneten Systems (Shielded, Retargeted Adenovirus) brachten die WissenschaftlerInnen den Tumor in der Brust einer Maus dazu, einen zur Behandlung von Brustkrebs klinisch zugelassenen Antikörper namens Trastuzumab (Herceptin) zu produzieren. Mithilfe eines hochauflösenden 3D-Bildgebungsverfahren und transparent gemachtem Gewebe konnten sie dann zeigen, wie der im Körper produzierte therapeutische Antikörper Poren in Blutgefäßen im Tumor erzeugt, dort Zellen zerstört und ihn so von innen heraus behandelt. Die Technologie wäre für die Verabreichung einer breiten Palette von  Substanzen in verschiedenen Organen und bei verschiedenen Erkrankungen anwendbar.

Referenz:
Universität Zürich
The SHREAD gene therapy platform for paracrine delivery improves tumor localization and intratumoral effects of a clinical antibody as shown by PACT, PNAS 2021, https://www.pnas.org/content/118/21/e2017925118/tab-article-info

#krebs #krebstherapie #tumor #brustkrebs #gentaxi #gentransfer #herceptin #medizin #medimpressions

Fotocredit: Canva

Kategorien
Allgemeinmedizin Infektiologie Pneumologie Wissenschaft

Tuberkulose: Wann ist eine Behandlung zu Ende?

Die Behandlung der Tuberkulose (TB) ist lang, belastend und teuer. Insbesondere das Auftreten von resistenten Tuberkulosebakterien erfordert einen langen Atem: Die WHO empfiehlt in diesen Fällen meist pauschal eine Therapiedauer von mindestens 18 Monaten, da es keine zuverlässigen Biomarker für einen vorzeitigen Stopp gibt. PatientInnen bei denen die Standardtherapie anschlägt, können unter Umständen aber nach sechs Monaten austherapiert sein. Wann sollte die mitunter nebenwirkungsreiche und belastende Therapie also ausgesetzt werden? Vor dieser Frage stehen MedizinerInnen immer wieder aufs Neue, denn der fehlende Nachweis des Tuberkuloseerregers Mycobacterium tuberculosis ist keine Gewähr für eine dauerhafte Heilung der Lungeninfektion.

Gemeinsam mit internationalen Tuberkulosezentren konnten deutsche Forschende nun nach sechs Jahren Forschungsarbeit und anhand von Patientenkohorten ein Modell für das Therapieende entwickeln, das auf einer RNA-Bestimmung im Blut beruht. Es konnten aus vielen Tausend Genen 22 identifiziert werden, deren Aktivität mit dem Krankheitsverlauf korreliert. Dieser Biomarker könnte eine klare Auskunft darüber geben, ob der Patient geheilt ist und eine Behandlung gefahrlos verkürzt werden kann.

Für die Identifizierung dieses individuellen Biomarkers haben die WissenschaftlerInnen fünf unterschiedliche Patientenkohorten aufgebaut. Dabei handelte es sich in allen Fällen um Erwachsene, die an Lungentuberkulose erkrankt waren, zum Teil an nicht-resistenten, z. T. an resistenten Formen. Im nächsten Schritt soll der Biomarker nun in der klinischen Routine eingesetzt und weiterhin getestet werden.

Referenz:
Research Center Borstel; Universität Lübeck, Karolinska Institut, Stockholm, Max Planck Institut Berlin, München; Kepler Universität, Linz
Prediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic model,
European Respiratory Journal 2021; https://erj.ersjournals.com/content/early/2021/01/28/13993003.03492-2020.long

#tuberkulose #biomarker #therapieende #resistenz #rna #mycobacterium tuberculosis #lunge #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Interne Medizin Pneumologie Wissenschaft

Lunge auf Chip

Ein Labor des ARTORG Center for Biomedical Engineering Research der Universität Bern befasst sich seit über zehn Jahren mit der Entwicklung hochspezialisierter In-vitro-Organ-Modellen, den sogenannten Organs-on-Chip. Der Schwerpunkt liegt dabei auf der Modellierung der Lunge und ihrer Erkrankungen. Nach einem ersten erfolgreichen Lunge-auf-Chip-System, das wesentliche Merkmale der Lunge aufweist, wurde nun eine rein biologische Lunge-auf-Chip der nächsten Generation entwickelt.

Pauline Zamprogno hat das neue Modell für ihre Doktorarbeit entwickelt. Die hervorstechendsten Eigenschaften der neuen Version: Das Modell reproduziert eine Ansammlung von Lungenbläschen, die mit je 250 Mikrometer Durchmesser etwa lebensgroß sind. Das System besteht aus einer dünnen, dehnbaren Membran aus Molekülen, die natürlicherweise in der Lunge vorkommen: Kollagen und Elastin. Die Membran ist stabil, kann wochenlang beidseitig kultiviert werden, ist biologisch abbaubar und ihre Elastizität ermöglicht das Simulieren von Atembewegungen durch mechanisches Dehnen der Zellen. Durch ihre Größe und die Ähnlichkeit zu echtem Lungengewebe, eignet sich das Modell nun auch zur Untersuchung verändertet Luft-Blut-Barrieren bei Lungenerkrankungen wie idiopathischer Lungenfibrose (IPF) oder chronisch-obstruktiver Lungenerkrankung (COPD).

Die Lunge-auf-Chip kann sowohl mit gesunden als auch mit erkrankten Lungenbläschen-Zellen, etwa Krebszellen, besiedelt werden. Damit erhalten Kliniker ein besseres Verständnis der Physiologie der Lunge und ein wirksames Werkzeug zum Screening möglicher neuer Wirkstoffe. So können Therapien identifiziert werden, die bestimmten Patienten am besten helfen können. Ein weiterer Vorteil der neuen Lunge-auf-Chip ist ihr Potenzial, pneumologische Forschung auf Basis von Tierversuchen zu reduzieren.

Referenz:
Universität Bern; Inselspital Bern; HIPS, Saarbrücken
Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane; Commun Biol 2021; 4:168; https://www.nature.com/articles/s42003-021-01695-0

#lunge #organonchip #lungonchip #lungenphysiologie #präzisionsmedizin #ipf #onkologie #medizin #medimpressions

Fotocredit: Canva