Kategorien
Hämatologie Interne Medizin Onkologie Wissenschaft

Neuer Angriffspunkt beim Multiplen Myelom

Das Multiple Myelom entsteht, wenn sich eine bestimmte Art von weißen Blutkörperchen (B-Zellen) unkontrolliert im Blut vermehrt. In der Folge werden die Knochen zerstört, die Patienten leiden außerdem unter Blutarmut, chronischen Infektionen und Nierenproblemen. Zwar stehen Chemo und weitere Therapien zur Verfügung, jedoch sprechen nicht alle Patienten auf die Behandlungen an und der Tumor zeigt auch bei Ansprechen eine deutliche Tendenz dazu, wieder zurückzukehren.

Bisher bekannt ist, dass die Fresszellen (Makrophagen) des Immunsystems, die eigentlich wichtig für die Abwehr von Eindringlingen im Körper sind, beim Multiplen Myelom für den Tumor arbeiten. Sie unterstützen Entzündungen und fördern damit das Überleben des Tumors und dessen Wachstum. Wie sie das tun, hat nun ein deutsches Forscherteam enträtselt.
Entzündliche Signale führen zur Bildung des Membranproteins Beta-2-Mikroglobulin. Je stärker die Erkrankung, desto mehr dieses Eiweißes ist im Blut der PatientInnen nachweisbar. Dieses wird von den Fresszellen verschlungen – aber nicht verdaut und abgebaut. Es liegt den Fresszellen gewissermaßen schwer im Magen und bringt diese dazu, weitere entzündliche Signale (Interleukin-1ß und Interleukin-18) auszusenden, die das Tumorgeschehen enorm verstärken.

Das Forschungsteam konnte auch nachweisen, dass die Krebserkrankung deutlich abgemildert werden kann, wenn es gelingt, diese Entzündungssignale zu blockieren. Eine zielgerichtete Blockierung der Aktivierung dieser Entzündungsreaktionen könnte zukünftig eine neue begleitende Therapiestrategie für PatientInnen mit diesem Knochenmarkstumor darstellen.

Referenz:
Universität Erlangen-Nürnberg
β2-microglobulin triggers NLRP3 inflammasome activation in tumor-associated macrophages to promote multiple myeloma progression, Immunity 2021; https://www.sciencedirect.com/science/article/abs/pii/S1074761321002648

#multiplesmyelom #knochenkrebs #tumor #entzuendung #makrophagen #fresszellen #entzuendungsmarker #medizin #medimpressions

Fotocredit: Canva

Kategorien
Genetik Immunologie Neurologie Onkologie Tumorbiologie Wissenschaft

Hirntumor: Wie sich „gelähmte“ Immunzellen reaktivieren lassen

Diffuse Gliome sind meist unheilbare Hirntumoren, die sich im Gehirn ausbreiten und operativ nur schwer vollständig entfernt werden können. 70% der noch niedriggradigen Tumore besitzen eine so genannte IDH-Mutation, die dazu führt, dass im Enzym Isozitrat-Dehydrogenase ein bestimmter Eiweißbaustein ausgetauscht wird.

Als Konsequenz der IDH-Mutation schütten die Gliomzellen das krebsfördernde Stoffwechselprodukt (R)-2-HG aus, das, so entdeckten deutsche Forscher, einwandernde Makrophagen beeinflusst. Dadurch werden diese Immunzellen gewissermaßen umprogrammiert und blockieren eine Immunantwort gegen den Tumor: Sie schütten Botenstoffe aus, die das Immunsystem bremsen, und beeinträchtigen die Aktivität von T-Zellen – Forscher sprechen von einer „Immunparalyse”. Die IDH-Mutation bewirkt letztendlich, dass sich die Gliome gegen das menschliche Immunsystem schützen können, so Mirco Friedrich vom Universitätsklinikum Heidelberg.
Was Makrophagen in diesen immunsuppressiven Status versetzt, wurde ebenfalls entschlüsselt: Schuld daran ist die Aktivierung eines zentralen Steuerungsmoleküls des Immunsystems, des Aryl-Hydrokarbon-Rezeptors.

Indem die Forscher die Funktion dieses Moleküls mittels eines Wirkstoffes gezielt bremsten, konnte das „gelähmte Immunsystem“ jedoch wieder reaktiviert werden. Diese Substanz, kombiniert mit einer speziellen Immuntherapie (Immun-Checkpoint-Inhibitor) führte im Tiermodell dazu, dass die ansonsten wirkungslose Immuntherapie anschlug und so das Leben der Mäuse mit diesen Tumoren verlängerte.
Die ermutigenden Ergebnisse sollen nun dazu beitragen, Immunreaktionen bei therapeutischen Impfungen gegen Gliome (die auch per se wirksam sind) noch weiter zu verstärken, indem tumorumgebenden Immunzellen gezielt auf die Sprünge geholfen wird.

Referenz:
DKFZ Heidelberg, Universität Freiburg, Universität Mannheim
A vaccine targeting mutant IDH1 in newly diagnosed glioma,
Nature 2021; https://dx.doi.org/10.1038/s41586-021-03363-z

gliom #hirntumor #mutation #idh #immuntherapie #makrophagen #tumormilieu #medizin #medimpressions

Fotocredit: Canva

Kategorien
Allgemeinmedizin Ernährung Immunologie Wissenschaft

Zuviel Kochsalz bremst die Fresszellen

Zuviel Kochsalz kann nicht nur den Blutdruck in die Höhe treiben, sondern auch den Energiehaushalt von Immunzellen empfindlich stören und ihre Funktionsfähigkeit beeinträchtigen, warnt ein internationales Forscherteam.

Dass erhöhte Natriumkonzentrationen im Blut sich sowohl auf die Aktivierung als auch die Funktion patrouillierender Monozyten, der Vorläuferzellen der Makrophagen, auswirkt, ist seit 2015 bekannt. Jetzt weiß man auch, wie das geschieht. Setzt man Immunzellen einer erhöhten Salzkonzentration aus, zeigen sich nach drei Stunden erste Veränderungen. Die Atmungskette wird unterbrochen: die Zellen produzieren weniger ATP und verbrauchen weniger Sauerstoff. ATP ist der universelle Kraftstoff aller Zellen. Er liefert Energie für die „chemische Arbeit“ – die Synthese von Proteinen und anderen Molekülen – für Muskelkraft und die Regulation des Stoffwechsels. Gewonnen wird ATP in den Mitochondrien, den „Kraftwerken“ der Zelle. Wird ihre Aktivität gebremst, reifen Monozyten anders aus und sie können ihrer Aufgabe, Krankheitserreger aufzuspüren und zu beseitigen, nur eingeschränkt nachgehen.

In weiteren Untersuchungen an männlichen Probanden, zeigte sich der dämpfende Einfluss auf die Mitochondrien bereits nach einmaligem Pizzagenuss (10g Salz). Wie lange der Effekt anhält und ob es bei weiterer Salzzufuhr zu Akkumulationseffekten kommt, muss noch untersucht werden. Ebenso, ob dieser Mechanismus auch bei anderen Zelltypen durch Salz beeinflussbar ist. Das ist sehr wahrscheinlich, denn Mitochondrien finden sich nicht nur in Immunzellen, sondern in fast jeder Körperzelle, besonders viele finden sich in Muskel-, Nerven-, Sinnes- und Eizellen.

Ernährungsgesellschaften empfehlen Erwachsenen übrigens nicht mehr als fünf bis sechs Gramm Kochsalz pro Tag.

Referenz:
MDC, Charité Berlin; Freie Universität Berlin, Uni Regensburg, Uni Diepenbeek, Uni Bonn
Salt transiently inhibits mitochondrial energetics in mononuclear phagocytes, Circulation 2021; https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.120.052788

#kochsalz #nacl #mitochondrien #salz #atp #immunzellen #mitochondrien #ernährung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Diagnostik Entwicklungsbiologie Gynäkologie Immunologie Reproduktionsmedizin Wissenschaft

Fresszellen bei Embryonen identifiziert

In einem vollständig entwickelten Menschen, Zebrafisch oder einer Maus ist es die Aufgabe von „Fresszellen“ (Makrophagen) des Immunsystems, abgestorbene Zellen zu beseitigen. Allerdings hat ein neu geformter Embryo noch kein Immunsystem, geschweige denn spezialisierte Fresszellen. Er besteht im Wesentlichen aus sich schnell teilenden Zellen. Die raschen Teilungsvorgänge machen ihn auch anfällig für Zellfehler, so die Forscher Verena Ruprecht und Stefan Wieser vom Barcelona Institute of Science and Technology.  Solche Fehler bei der Teilung sind wahrscheinlich der Hauptgrund, dass sich manche Embryos vor der Einpflanzung (Implantation) nicht richtig entwickeln, sowie für Fehlgeburten.

Das erste spezialisierte Gewebe, das sich in einem Embryo bildet, ist die Außenhaut (Epithel). Wie die Forscher nun herausfanden, sind es auch diese Zellen, die während des schnellen Wachstums die Aufgabe der Immunzellen übernehmen. Wie später die Makrophagen erkennen sie sterbende Zellen daran, dass diese einen Fettstoff (Phosphatidylserin) an der Außenseite präsentieren, anstatt ihn an der Innenseite der Zellmembran zu verstecken. Die Epithelzellen formen daraufhin Fortsätze an der Oberfläche und reichen die kaputten Zellen weiter, um die Beseitigung der sterbenden Zellen zu beschleunigen. Dann fressen sie diese schließlich so auf, wie es die spezialisierten Immunzellen später ebenfalls tun.

In Zukunft könnte man nach einer künstlichen Befruchtung die Außenseite der Embryos nach solchen Fressvorgängen untersuchen, meint Ruprecht. Da sie einen Hinweis auf mögliche Probleme geben: „Es wäre eine nicht-invasive Methode, um zu erkennen, ob in einem Embryo Zelltod stattgefunden hat, der wiederum ein Hinweis auf Zellfehler und Probleme bei der Zellteilung ist.“

Referenz: BIST
Pressemeldung Science APA, 29.3.2021; Embryo-Außenhaut erkennt und vernichtet sterbende Zellen; Cooperative epithelial phagocytosis enables error correction in the early embryo, Nature 2021; https://doi.org/10.1038/s41586-021-03200-3

#embryonalentwicklung #embryo #immunzellen #makrophagen #fresszellen #reproduktionsmedizin #immunsystem #medizin #medimpressions

Fotocredit: Canva

Kategorien
Chirurgie Immunologie Interne Medizin Wissenschaft

Fresszellen sorgen für Verwachsungen im Bauchraum

Verwachsungen im Bauchraum, die etwa nach Operationen entstehen, haben oft schwerwiegende Folgen. Sie können chronische Schmerzen verursachen, zu Unfruchtbarkeit führen und müssen oft erneut operiert werden. Wie es zu diesen Adhäsionen kommt, haben Wissenschaftler nun enträtselt. Es wurde bereits vermutet, dass bei der Entstehung spezielle Immunzellen, sogenannte Makrophagen (Fresszellen), eine entscheidende Rolle spielen. Dies konnte jetzt bestätigt werden.

Den Forschern gelang es, ein neues Mikroskopiesystem zu entwickeln, um die Makrophagen sozusagen ’in flagranti’ dabei zu filmen, wie sie Formen bilden, die dann zu den Verwachsungen führen. Fresszellen befinden sich in der Bauchhöhle in der sogenannten peritonealen Flüssigkeit, dem ’Schmiermittel’ zwischen dem Bauchfell, der inneren Auskleidung der Bauchwand, und einem ähnlichen Überzug der Organe in der Bauchhöhle. In dieser Flüssigkeit schwimmen sie frei umher, beseitigen Krankheitserreger und versiegeln Verletzungen im Bauchraum. Dazu verklumpen sie innerhalb von Minuten zu Gerinnsel-ähnlichen Strukturen. Was bei kleineren Verletzungen gut funktioniert, wird aber bei großen Verletzungen zum Problem. Die Fresszellen geraten außer Kontrolle – die Gerinnsel hören nicht auf zu wachsen und bilden lange Stränge, die zu Verwachsungen führen.

Die Forschenden stellten aber auch fest, dass wenn die entsprechenden Rezeptoren im Mausmodell blockiert werden, dies zu weniger Verwachsungen führt. Der entsprechende Wirkstoff wurde bereits zum Patent angemeldet. Künftig könnten Patienten etwa vor Operationen ein Medikament erhalten, das die Reaktion der Makrophagen unterdrückt und Verwachsungen verhindert. Der entdeckte Mechanismus könnte zudem nicht nur bei Verletzungen, sondern auch Erkrankungen wie etwa Bauch-Tumoren eine Rolle spielen.

Referenz:
Universität Bern, University of Calgary
Primordial GATA6 macrophages function as extravascular platelets in sterile injury, Science 2021; https://science.sciencemag.org/content/371/6533/eabe0595

#makrophagen #fresszellen #verwachsungen #operation #chirurgie #gerinnsel #immunologie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurologie Onkologie Wissenschaft

Molekularer Teufelskreis von Hirntumoren bei Kindern entschlüsselt

Forscher aus Wien und Linz konnten mit Hilfe einer umfassenden molekularen Analyse der Cerebrospinalflüssigkeit wichtige Erkenntnisse in Bezug auf die Aggressivität des Medulloblastoms, dem häufigsten bösartigen Hirntumor bei Kindern finden.

Mittels modernster massenspektrometrischer Verfahren erfolgte eine Analyse des Protein-, Stoffwechsel- und Blutfett- bzw. Lipidhaushalt des vom Tumor umgebenden Gewebe. Neben dem Nachweis charakteristischer Tumor-Marker wurde festgestellt, dass Tumor-assoziierte Makrophagen (sog. Fresszellen) direkt tumorfördernde Proteine bilden sowie zusätzlich Lipidhormone erzeugen, welche den Stoffwechsel wiederum in Tumor-fördernder Weise verändern. So kann eine Mikroumgebung entstehen, in der die Bildung von Therapie-resistenten Tumorzellen direkt gefördert wird und es, trotz Behandlung, zu einer wiederkehrenden Erkrankung kommen kann. Diese Erkenntnisse geben Hoffnung auf die Entwicklung neuer Therapieansätze.

Referenzen:
Universität Wien, Pressemeldung 2. Juni 2020
https://medienportal.univie.ac.at/…/molekularer-teufelskre…/
Cancers MDPI, published 26 May 2020
https://doi.org/10.3390/cancers12061350

Universität Wien JKU – Johannes Kepler Universität Linz

#hirntumor #medulloblastom #makrophagen #molekularanalyse #neuroonkologie #uniwien #johanneskeplerunilinz #molekularerteufelskreis #medizin #medimpressions

Fotocredit: Canva