Kategorien
Biotechnologie Diagnostik Technologie Wissenschaft

Biochips schmuggeln effizient Wirkstoffe in Zellen ein

Moderne Impfstoffe wie die gegen Sars-CoV-2 nutzen winzige Fettkügelchen, um genetische Informationen in Zellen zu bringen und so eine Immunabwehr gegen das gefährliche Virus aufzubauen. Ein Team von WissenschaftlerInnen hat nun eine ganz neue Methode entwickelt, mit deren Hilfe sich sehr effizient nicht nur Gene, sondern auch Wirkstoffe und andere Substanzen in Zellen transportieren lassen. Das neue Verfahren, das jetzt auch als Patent eingereicht wurde, nennt sich „Progressive Mechanoporation“.

Die ForscherInnen entwickelten einen speziellen Biochip aus einem Kunststoff, auf dem hintereinander immer enger werdende Kanäle, die mehr als zehnmal kleiner sind als ein menschliches Haar, angeordnet sind. Zellen, die durch diese Kanäle gepresst werden, strecken sich dabei immer stärker, bis Löcher in der Plasmamembran entstehen. Durch diese Löcher können dann Moleküle in das Zellinnere gelangen. Haben die Zellen die Kanäle passiert, schließen sich die Löcher von alleine wieder. Die Forschenden haben gezeigt, dass das sogar mit sehr großen Proteinen, wie beispielsweise Antikörper, klappt.

Ein großer Vorteil der Methode: Pro Sekunde können so bis zu 10.000 Zellen durch den Chip geschickt werden. Gleichzeitig ist das Verfahren sehr schonend, nur wenige Zellen werden im Vergleich zu anderen Techniken geschädigt.
Mit Hilfe der neuen Methode könnten Pharmahersteller künftig etwa sehr effizient Wirkstoffe testen, um neue Medikamente zu entwickeln. Krankenhäuser könnten in Zukunft mit der „Progressiven Mechanoporation“ routinemäßig Zellen von Patienten untersuchen und sogar behandeln.

Referenz:
TU Dresden; Max-Planck-Zentrum für Physik und Medizin; ICR, London
Efficient and gentle delivery of molecules into cells with different elasticity via progressive mechanoporation, Lab Chip, 2021, Advance Article;
https://doi.org/10.1039/d0lc01224f

#wirkstoffe #transport #intrazellulär #biochip #membran #medikamentenentwicklung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Angiologie Biotechnologie Hämatologie Intensivmedizin Onkologie Wissenschaft

Mikrovehikel die gegen den Strom schwimmen

Winzige Vehikel, so klein, dass sie durch unsere Blutgefäße navigieren können, sollen es Ärzten in Zukunft erlauben, im Körperinnern Biopsien zu nehmen, Stents einzusetzen oder Medikamente präzise an schwer zu erreichende Stellen zu transportieren. Wissenschaftler weltweit erforschen und entwickeln derzeit solche Mikrovehikel. Allerdings war es bisher eine große Herausforderung, Mikrovehikel gegen einen Flüssigkeitsstrom zu bewegen. Forschende der ETH Zürich haben nun Mikrovehikel entwickelt, welche von einem externen Feld angetrieben werden und gegen den Strom schwimmen können.

Sie benutzten magnetische Eisenoxid-Polymer-Kügelchen mit einem Durchmesser von 3 Mikrometern, die sich in einem Magnetfeld zu einem Schwarm mit einem Durchmesser von 15 bis 40 Mikrometern zusammenballen. Um den Kügelchenschwarm in einem Röhrchen, das der Größe von Blutgefäßen entspricht, stromaufwärts zu bewegen, nutzten sie denselben Trick, den auch Bootsfahrer in einem Fluss nutzen: Letztere rudern in Ufernähe stromaufwärts. Dort ist die Fließgeschwindigkeit wegen des Reibungswiderstands des Ufers geringer als in der Flussmitte.

Mithilfe von Ultraschall einer bestimmten Frequenz brachten die Wissenschaftler den Mikrokügelchen-Schwarm zunächst in die Nähe der Röhrchenwand. Anschließend konnten sie den Schwarm mit einem rotierenden Magnetfeld entgegen der Flussrichtung bewegen.

„Weil sowohl Ultraschallwellen als auch Magnetfelder Körpergewebe durchdringen, ist unsere Methode gut geeignet, um Mikrovehikel auch im Körperinnern zu lenken,“ fassen die Studienleiter Daniel Ahmed und Bradley Nelson ihre Ergebnisse zusammen. Neben dem Abbau von verstopften Blutgefäßen könnten die Mikrovehikel dazu verwendet werden, um Krebsmedikamente über die Blutgefäße zu Tumoren zu bringen oder Wirkstoffe ins Hirngewebe transportieren zu können.

Referenz:
ETH Zürich
Bioinspired acousto-magnetic microswarm robots with upstream motility, Nature Machine Intelligence, https://www.nature.com/articles/s42256-020-00275-x

#mikrovehikel #blutbahn #medikamententransport #magnetfeld #therapie #onkologie #angiologie #medizin #medimpressions

Fotocredit: Canva