Kategorien
Diagnostik Digital Health Interne Medizin Technologie Wissenschaft

Ultraleichtes Sensorpflaster ersetzt Kabel und Geräte

Für viele Menschen ist es ein notwendiges Übel – das dreimal tägliche Messen von Blutdruck und Puls. Stress verursachen auch die eingesetzten Messgeräte, die hinsichtlich Größe und Gewicht, als auch Messvorgang meist als unhandlich empfunden werden, was folglich sogar die Blutdruckwerte verfälschen kann.

Diese Situation inspirierte Forscher des Joanneum Research, gemeinsam mit Kollegen der Osaka Universität, ein elektronisches Sensorpflaster für Gesundheitsparameter zu entwickeln, das so dünn ist, dass man es kaum spürt. Insgesamt ist das Pflaster nicht mehr als 0,0025 mm dick und enthält ein ferroelektrisches Polymer zwischen zwei Elektrodenflächen, das auf einer hauchdünnen Trägerfolie aufgebracht wurde. Es schmiegt sich komplett an die Haut an und ist damit der weltweit erste, ultraflexible piezoelektrische Sensor. Neben der Pulsrate kann das Sensorpflaster Aussagen über die Elastizität der menschlichen Blutgefäße machen und über die Pulswellengeschwindigkeit den Blutdruck messen. Die Messdaten können dank eines Elektronikmoduls auch an ein Smartphone drahtlos übertragen werden.

Besonders faszinierend ist, dass das Sensorpflaster kabellos und komplett energieautark eingesetzt werden kann, da die Gewinnung der elektrischen Energie – mittels entsprechender Schaltung – über biomechanische Bewegungen, etwa während des Stufensteigens, gewonnen werden kann. Dies würde für eine dreimal tägliche Blutdruckmessung ausreichen, so die Forscher, vorausgesetzt, es findet sich ein leichtes  verbrauchsarmes Elektronikmodul für kabellose Datenübertragung, die derzeit noch rar gesät sind.

Elektronische Sensorpflaster könnten künftig als Teil des Screenings bei weiteren Herz-Kreislauferkrankungen, Stressfaktoren und Schlafapnoe eingesetzt werden.

Referenz:
Joanneum Research Weiz/Graz; Osaka University
Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes, Nature Comm 2021; https://www.nature.com/articles/s41467-021-22663-6

#messpflaster #sensoren #blutdruckmessung #puls #datenaufzeichnung #smartphone #medizin #medimpressions

Fotocredit: Canva

Kategorien
Allgemeinmedizin Diagnostik Digital Health Gesundheitsökonomie Technologie Wissenschaft

Das Blutbild ist so individuell wie ein Fingerabdruck

Die Zusammensetzung der Moleküle in unserem Blut ist einzigartig, vergleichbar zu einem Fingerabdruck eines Menschen. Verändert sich jedoch der Mix der Moleküle im Organismus könnte dies ein Hinweis darauf sein, dass er erkrankt ist. Voraussetzung einer solchen Diagnose ist es aber, vorab zu wissen, ob der so genannte „molekulare Fingerabdruck“ eines Menschen im gesunden Zustand zuvor über längere Zeit stabil war.

Eine solche Langzeitstabilität bei gesunden Personen hat nun ein deutsches Forscherteam anhand von Fourier-Transform Infrarotmessungen (FTIR) nachgewiesen. Die Forscher zeigten, dass die molekulare Zusammensetzung im Blut einzelner gesunder Personen über mehrere Monate stabil war und sogar individuell zugeordnet werden konnte. „Diese bisher unbekannte zeitliche Stabilität einzelner biochemischer Fingerabdrücke bildet die Grundlage für künftige Anwendungen des blutbasierten Infrarot-Spektral-Fingerabdrucks als verlässliche Art der Gesundheitsüberwachung,“ freut sich das Team „Broadband Infrared Diagnostics“ (BIRD) um die Biologin Mihaela Žigman, LMU München.

Fourier-Transform Infrarotmessungen, die mit konventionellem Licht arbeiten, könnten künftig von Infrarotlaser-basierten Messungen abgelöst werden. Diese Art der Analyse von Molekülen im Blut wäre aufgrund der enormen Stärke des Laserlichts noch exakter als die bisher verwendete FTIR-Methode und könnte auch ganz geringe Mengen von spezifischen Molekülen nachweisen. An entsprechenden Lasertechnologien wird bereits gearbeitet.
Damit besteht die Möglichkeit von wiederholten, minimal-invasiven Messungen von blutbasierten Infrarot-Fingerabdrücken zur zukünftigen Überwachung des menschlichen Gesundheitszustands und damit zur Früherkennung von Krankheiten.

Referenz:
Ludwig-Maximilians-Universität München, Max-Planck-Institut (MPQ)
Stability of person-specific blood-based infrared molecular fingerprints opens up prospects for health monitoring, Nature Communications 2021; https://www.nature.com/articles/s41467-021-21668-5

#blutbild #gesundheitsüberwachung #monitoring #screening #infrarotlaser #gesundheit #molekularerfingerabdruck #medizin #medimpressions

Fotocredit: Canva