Kategorien
Biotechnologie Genetik Neurologie Onkologie Pädiatrie Personalisierte Medizin Wissenschaft

Die Evolution des Neuroblastoms

Tumore sind heterogen: Sie unterscheiden sich in verschiedenen Teilen des Tumors genetisch voneinander. Diese intratumorale genetische Heterogenität spielt bei vielen Krebserkrankungen eine wichtige Rolle, da sie sich auf die Diagnostik sowie den Einsatz von zielgerichteten Therapien auswirken kann.

Dies gilt auch für das Neuroblastom, einer relativ häufigen Krebserkrankung bei Kindern. Eine deutsche Arbeitsgruppe untersuchte nun die Erbgutveränderungen, die den bösartigen Tumor auszeichnen und stellte fest, dass die für das Neuroblastom typischen Veränderungen im Verlauf der Erkrankung verschwinden oder aber neu entstehen können. Eines der untersuchten Gene (ALK) war etwa bei Diagnosestellung vorhanden, bei der nachfolgenden Operation aber nicht mehr. Die untersuchten Mutationen kommen zudem nicht gleichmäßig verteilt im Tumor vor, sondern nur in einzelnen Bereichen oder sogar nur in einzelnen Zellen eines Tumors, fasst Karin Schmelz, Erstautorin der Studie die zentrale Erkenntnis zusammen. Mitautor Roland Schwarz: „Die Zellen verändern fortlaufend ihre genetische Zusammensetzung und kämpfen ums Überleben, auch untereinander. Sie haben jeweils eigene Stammbäume, einige bilden später Metastasen oder werden schwerer behandelbar.“

Das Team untersuchte 140 Proben des Neuroblastoms die aus räumlich verschiedenen Bereichen des Tumors stammten und im Verlauf der Erkrankungen von zehn Kindern entnommen wurden. Für die Auswertung wurden moderne Sequenzierungsmethoden sowie computergestützte Analysen eingesetzt. Das Verständnis der Biologie des Tumors soll nun vor allem PatientInnen zugutekommen, die einen Rückfall erleiden, denn erst hier kommen personalisierte, gezielte Therapien zum Einsatz. Für die Behandlung der Ersterkrankung bleibt die Chemotherapie das Mittel der Wahl.

Referenz:
Charité Berlin
Spatial and temporal intratumour heterogeneity has potential consequences for single biopsy-based neuroblastoma treatment decisions, Nature Comm 2021; https://www.nature.com/articles/s41467-021-26870-z

#krebs #neuroblastom #kinder #tumor #tumorbiologie #genetik #tumorevolution #medizin #medimpressions

Kategorien
Immunologie Neurologie Wissenschaft

Mit Kälte gegen multiple Sklerose

Autoimmunerkrankungen treten auf, wenn das Immunsystem körpereigene Organe angreift. Multiple Sklerose (MS) ist die häufigste Autoimmunerkrankung des zentralen Nervensystems. Die Krankheit zeichnet sich durch die Zerstörung des Myelins aus, das eine schützende Isolierung der Nervenzellen darstellt und für die korrekte und schnelle Übertragung elektrischer Signale wichtig ist. Seine Zerstörung führt somit zu neurologischen Behinderungen bis hin zu Lähmungen.

Dieser Prozess benötigt eine Menge Energie. Wird diese anderweitig verwendet, könnte man die Erkrankung möglicherweise aufhalten, postulierten deshalb Forschende der Universität Genf. Um diese Theorie zu verifizieren, entzogen sie Mäusen mit einer MS-ähnlichen Erkrankung Energie, indem sie sie einer kälteren Umgebungstemperatur aussetzten. Die Tiere benötigen dadurch mehr Ressourcen, um ihre Körpertemperatur aufrecht zu erhalten. Im Ergebnis führte dies tatsächlich dazu, dass sich ihre Erkrankung verbesserte. Durch die Reduzierung der Umgebungstemperatur um zehn Grad, kam es zu einer Abnahme entzündungsfördernder Immunzellen und die Mäuse waren viel agiler. Zudem verringerte sich das Ausmaß der im Zentralnervensystem beobachteten Demyelinisierung.

Ob und wie sich dieses Konzept klinisch nutzen lässt, ist allerdings noch unklar. Aber es bietet möglicherweise eine Erklärung dafür, warum die in den letzten Jahrzehnten spürbare Verbesserung der Lebensbedingungen in den westlichen Ländern zu einer Zunahme von Autoimmunerkrankungen geführt hat. Obwohl dieser Anstieg vermutlich mehrere Gründe hat, könnte eine zu warme Umgebungstemperatur eine noch wenig verstandene Rolle bei der Entwicklung von Autoimmunerkrankungen spielen, meinen die Wissenschaftler.

Referenz:
Université de Genève
Cold exposure protects from neuroinflammation through immunologic reprogramming, Cell Metabolism 2021; https://www.sciencedirect.com/science/article/pii/S1550413121004800?via%3Dihub

#ms #multiplesklerose #autoimmunerkrankung #kaelte #immunologie #entzuendung #medizin #medimpressions

Kategorien
Immunologie Interne Medizin Wissenschaft

Alzheimerforschung: Nervenzelle O identifiziert

„Im Alterungsprozess des Menschen kommt es in unseren Nervenzellen in steigendem Maße zu Fehlern“, erläutert Janine Kirstein von der Universität Bremen. „Bei Alzheimer kommt es beispielsweise zunehmend zu einer Anhäufung von fehlgefalteten Proteinen, die dann verklumpen und längliche, seilartige Strukturen (fibriläre Abeta-Aggregate) ausbilden.“ Diese „Zugseil-Strukturen“ können große Hirnareale befallen und führen schließlich zu Erkrankungen wie Alzheimer oder auch Parkinson – und im schlimmsten Falle zur Demenz mit allen verbundenen kognitiven Beeinträchtigungen.

Ihrer Arbeitsgruppe ist es nun gelungen, diesen Prozess sichtbar zu machen und vor allem den „Startpunkt“ der Krankheit – die „Nervenzelle 0“ – in Fadenwürmern zu identifizieren.

Mit Hilfe dieses Krankheitsmodells konnten sie zeigen, dass die Aggregation des Abeta Peptids in genau sechs Nervenzellen – den IL2-Neuronen – beginnt und sich von dort aus systematisch auf alle Nervenzellen ausweitet. Sie belegten auch, dass eine gezielte Hemmung der Abeta Aggregation in den IL2-Neuronen die Aggregationskaskade und Übertragung auf andere Neuronen verlangsamt. Zudem konnte eine Reduktion der Toxizität und eine Erhöhung der medianen Lebensspanne bei den Fadenwürmern beobachtet werden.

Die Ergebnisse aus der Forschung lassen es nun zu, auch beim Menschen gezielt auf die Nervenzellen zu fokussieren, in der neurodegenerative Erkrankungen wie Alzheimer beginnen. „Man könnte zum Beispiel einen Marker entwickeln, der einen Rückschluss darüber zulässt, ob die Degeneration bereits begonnen hat“, so Kirstein. „Dementsprechend schneller könnte man dann handeln, um weitergehende Folgen zu vermeiden.“ Diese Erkenntnisse sind damit sowohl für die Diagnostik als auch für die Entwicklung neuer therapeutischer Ansätze hoch relevant.

Referenz:
Universität Bremen
Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity, Progress in Neurobiology 2021; https://www.sciencedirect.com/science/article/pii/S0301008220301623

#alzheimer #parkinson #demenz #neurowissenschaften #nerven #aggregation #gehirn #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurologie Neurowissenschaften Technologie Wissenschaft

Gehirn: mehr Rechenpower und Speicherplatz als vermutet

Nervenzellen kommunizieren miteinander via Synapsen. Deren Leistung dürfte viel höher sein, als bisher vermutet, wie Neurowissenschaftler zeigen. Die Signalübertragung ist dabei umso stärker, je grösser eine Synapse ist. „Mit dieser Erkenntnis schließen wir eine zentrale Wissenslücke der Neurobiologie“, so Kevan Martin von der Universität Zürich: „zudem ist dieses Wissen entscheidend, um zu verstehen, wie Informationen durch die Schaltpläne des Gehirns fließen und somit unser Gehirn funktioniert.“

Um die Synapsenströme zwischen Nervenzellen zu messen, fertigten sie hauchdünne Schnitte eines Mausgehirns an und führten unter dem Mikroskop feine Glaselektroden in zwei benachbarte Nervenzellen der Großhirnrinde ein. Damit konnten sie eine der beiden Nervenzellen künstlich aktivieren und gleichzeitig die Stärke des resultierenden Synapsenstroms in der anderen Zelle messen. Zudem injizierten sie einen Farbstoff, um die verästelten Zellfortsätze im Lichtmikroskop dreidimensional rekonstruieren zu können.

„Damit können nun die Schaltkreise der Großhirnrinde mithilfe von Elektronenmikroskopie exakt kartografiert und deren Informationsfluss am Computer simuliert und interpretiert werden,“ erklärt Gregor Schuhknecht, ETH Zürich: „diese Arbeiten ermöglichen ein besseres Verständnis, wie das Hirn normalerweise funktioniert, und wie «Verdrahtungsdefekte» zu neurologischen Entwicklungsstörungen führen können.“

Mithilfe von mathematischen Analysen konnten die Forschenden auch zeigen, dass Synapsen komplexer sind als bisher angenommen. Sie können nicht nur ein einziges Vesikel mit Botenstoffen aussenden, wie bisher angenommen, sondern mehrere Vesikel an verschiedenen Stellen gleichzeitig. Damit lässt sich auch ihre Signalstärke dynamischer regulieren als bisher gedacht.

Referenzen:
ETH, Universität Zürich; Harvard University
Structure and function of a neocortical synapse; Nature 13.1.2021; https://www.nature.com/articles/s41586-020-03134-2

#gehirn #neurowissenschaften #verknüpfung #neuronen #nervenzellen #synapsen #medizin #medimpressions

Fotocredit: Canva

Kategorien
Genetik Neurowissenschaften Wissenschaft

Neue Therapie für kranke Nervenzellen

Nervenzellen sind langlebig, im Falle von neurodegenerativen Erkrankungen wie der amyotrophen Lateralsklerose (AML) oder der frontotemporalen Demenz (FTD) können sie sich aber nicht mehr regenerieren. Bei der Entstehung solcher Erkrankungen spielt die Verklumpung von Proteinen im Zellkern eine zentrale Rolle. Forscher an der Med-Uni Graz haben gemeinsam mit internationalen Kollegen einen Mechanismus gefunden, der im Normalfall die krankmachende Verklumpung der RNA-bindenden Proteine verhindert.

Bei vielen neurodegenerativen Erkrankungen kommt es im Zellkern von Nervenzellen zu pathologischen Ablagerungen von Proteinen, die das Absterben dieser Zellen auslösen. Die Folge ist eine schrittweise Beeinträchtigung der körperlichen und geistigen Fähigkeiten. Wenn ALS und FTD genetisch veranlagt ist, entstehen sogenannte DPR-Proteine (Dipeptid-Wiederholungsproteine) durch Abschreiben von Hexanukleotid-Wiederholungen im C9orf72-Gen. Das Forscherteam untersuchte, ob diese aggregationsfreudigen DPR-Proteine durch körpereigene Proteine, speziell Importin-Proteine, vor einer Verklumpung geschützt werden können.

Ihre Untersuchungen dieser körpereigenen nuklearen Importrezeptoren belegen, dass solche Proteine tatsächlich die Verklumpung von DPR Proteinen verhindern und deren toxische Wirkung aufheben können. „Diese Entdeckung war für uns faszinierend und könnte therapeutische Auswirkungen haben, da sie darauf hindeutet, dass Therapeutika mit Ähnlichkeiten zu Import Proteinen vielversprechend bei der Behandlung von ALS und FTD sein könnten“, erklärte Tobias Madl, MedUni Graz.  Zur Entwicklung neuer Therapeutika werden aber wohl noch einige Jahre benötigt.

Referenzen:
Med-Uni Graz; LMU, München; University of Pennsylvania; DZNE, München; Universität Zürich
Nuclear Import Receptors Directly Bind to Arginine-Rich Dipeptide Repeat Proteins and Suppress Their Pathological Interactions“, Cell Reports 2020, 33:12
https://www.sciencedirect.com/science/article/pii/S2211124720315278

#aml #ftd #neurodegenerativeerkrankung #nervenzellen #verklumpung #therapie #zellkern #medizin #medimpressions

Fotocredit: Canva