Kategorien
Neurologie Neurowissenschaften Wissenschaft

„Minis“ halten Nervenverbindungen jung

Neuronen kommunizieren mittels schneller elektrischer Signale, die die Freisetzung von Neurotransmittern, den chemischen Botenstoffen des Gehirns, regulieren. Diese Art der interneuronalen Kommunikation nennt man evozierte Neurotransmission. Nervensynapsen können jedoch auch in Abwesenheit eines elektrischen Impulses Neurotransmitter freisetzen. Diese Miniatur-Freisetzungen (Minis) wurden lange Zeit nur als „Hintergrundrauschen“ ohne nähere Funktion wahrgenommen. Tatsächlich zeigen neuere Studien jedoch, dass Minis offenbar wichtige Aufgaben erledigen.

Sie agieren wie „Pings“ für den Computer und stellen sicher, dass Neuronen verbunden sind. Ein Schweizer Forschungsteam wies jetzt nach, dass Minis auch im reifen Nervensystem eine Rolle spielen. Sie fanden heraus, dass die Synapsen von Fruchtfliegenzellen mit zunehmendem Alter in kleinere Fragmente zerfielen. Ein Phänomen, dass auch bei alternden Säugetieren eintritt. Geschieht dies, sind sowohl die evozierte als auch die Miniatur-Neurotransmission beeinträchtigt und die Fliegen zeigen motorische Probleme, wie z.B. eine verminderte Fähigkeit, die Wände einer Plastikflasche zu erklimmen.

Werden beide Übertragungsarten blockiert, altern Synapsen vorzeitig, was darauf hindeutet, dass bei der Alterung oder bei altersbedingten neurologischen Erkrankungen Veränderungen der Neurotransmission auftreten, bevor die Synapsen zusammenbrechen. Daran lässt sich bei künftigen klinischen Interventionen ansetzen: Wird die Tätigkeit der Minis (jedoch nicht die der evozierten Transmission) stimuliert, bleiben Synapsen erhalten und die motorischen Fähigkeiten von Fruchtfliegen mittleren Alters gelangen auf ein Niveau, das mit dem von jungen Fliegen vergleichbar ist. Die Erkenntnisse könnten auch dazu beitragen, Anomalien die Minis betreffen, besser zu verstehen, etwa Neuroentwicklungsstörungen bei Kindern.

Referenz:
EPFL, Lausanne
Miniature neurotransmission is required to maintain Drosophila synaptic structures during ageing, Nature Comm 2021; https://www.nature.com/articles/s41467-021-24490-1

#gehirn #synapsen #minis #neurotransmitter #alterung #nervenzellen #neurotransmission #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurologie Neurowissenschaften Psychiatrie Wissenschaft

Gefahr oder nicht – Wer legt den Gehirn-Schalter um?

Machen wir eine schlechte Erfahrung, können sogar wenig bedrohliche Phänomene uns auf einmal Angst einflößen. Wenn nichts Bedrohliches mehr passiert, können wir jedoch lernen, uns nicht mehr zu fürchten (Extinktion). Funktioniert dieser Mechanismus nicht richtig, kann dies zu psychischen Störungen führen.

Welche Nervenzellen im Gehirn am Schutzmechanismus beteiligt sind und wie sie den Angst-Schalter umlegen, hat ein internationales Forschungsteam im Mausmodell dokumentiert. Im Fokus stehen dabei die sogenannten Interkalierten Zellen. Diese liegen in mehreren Clustern um die Amygdala, eine Gehirnregion, die Furcht- und emotionales Verhalten steuert. Nun wurde gezeigt, dass ein spezifisches Cluster dieser Zellen aktiv wird, wenn die Mäuse eine Furchtreaktion auf ein Geräusch zeigen. Lernen sie, sich nicht mehr zu fürchten, wird ein anderes Cluster aktiv. Diese Cluster hemmen sich gegenseitig und aus diesem Tauziehen geht jeweils ein Cluster als Gewinner hervor der über seine spezifischen Verbindungen zu nachgeschalteten Nervenzellen das Furchtverhalten steuert.

Die Besonderheit der Zellen besteht auch darin, dass Sie starke Verbindungen aus einem Gehirngebiet erhalten, das mit Lernen und Gedächtnis im Zusammenhang steht, dem dopaminergen Mittelhirn. Dopamin reguliert auch die Aktivität zwischen Interkalierten Zellclustern. Zum Erstaunen der Forscher zeigte sich, dass auch andere Botenstoffe eine Rolle spielen und sich der Effekt beim Extinktionslernen verändert: Das Zellcluster, das bei Furcht aktiv ist, wird stärker durch GABA gehemmt und zusätzlich wird seine Hemmung auf das bei Extinktion aktive Cluster durch Dopamin verringert.

Referenz:
Universität Stuttgart, Universität Innsbruck, Uni Basel…
Intercalated amygdala clusters orchestrate a switch in fear state, Nature 2021; https://www.nature.com/articles/s41586-021-03593-1
Midbrain dopaminergic inputs gate amygdala intercalated cell clusters by distinct and cooperative mechanisms in male mice, eLife 2021; https://elifesciences.org/articles/63708

#gehirn #furcht #angst #extinktion #nervenzellen #fehlregulation #psychiatrie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurowissenschaften Psychiatrie Psychologie Wissenschaft

Neuer Wirkmechanismus von Antidepressiva

WissenschaftlerInnnen des Universitätsklinikums Freiburg haben gemeinsam mit internationalen Kollegen nachgewiesen, dass Antidepressiva bei Nervenzellen an einer bislang unbekannten Stelle andocken und so ihre stimmungsaufhellende Wirkung entfalten. Indem sie auf den Nervenzellen an den Rezeptor des sogenannten Brain derived neurotrophic Factor (BDNF) binden, kommt es zu einer verbesserten Aktivität in Hirnregionen, die bei depressiven Patienten beeinträchtigt sind.

„Mit dem BDNF-Rezeptor als Andockstelle können wir erstmals direkt erklären, wie Antidepressiva wirken und warum es so lange dauert, bis die Wirkung einsetzt“, erklärt Forschungsleiter Claus Normann. Bisher ging man davon aus, dass sie über eine Erhöhung des Botenstoffes Serotonin im Gehirn wirken; es blieb jedoch völlig unklar, wie das genau funktioniert. Das ändert sich jetzt mit der Studie.

Durch die Bindung an das Wachstumshormon BDNF kommt es zu einer verbesserten Aktivität in Hirnregionen, die bei depressiven Patienten beeinträchtigt sind. Das gilt für unterschiedliche Arten von Antidepressiva wie Selektive Serontonin-Wideraufnahmehemmer (SSRI) oder Ketamin. Über die Stimulation des BDNF greifen Antidepressiva in einen zentralen Lern- und Anpassungsmechanismus des Gehirns ein, der als synaptische Plastizität bezeichnet wird.  Normann: „Interessanterweise benötigt diese Bindungsstelle einen normalen Cholesterinspiegel, um optimal aktiv werden zu können.“ Zu hohe, aber auch zu niedrige Cholesterinspiegel verformen den BDNF-Rezeptor, so dass Wirkstoffe schlechter binden. Diese Erkenntnisse tragen sehr zum Verständnis der Depression und zur Entwicklung neuer Medikamente bei. Durch eine zielgerichtete Therapie könnten sich hier neue Perspektiven für eine nebenwirkungsärmere und effektivere Behandlung ergeben.

Referenz:
Universität Freiburg; University of Helsinki; University of BergenAntidepressants act by directly binding to TRKB neurotrophin receptors, Cell 18.2.2021;
https://www.sciencedirect.com/science/article/pii/S0092867421000775

#antidepressiva #gehirn #wirkmechanismus #bdnf #depression #ssri #cholesterin #medizin #medimpressions

Fotocredit: Canva

Kategorien
Immunologie Interne Medizin Wissenschaft

Alzheimerforschung: Nervenzelle O identifiziert

„Im Alterungsprozess des Menschen kommt es in unseren Nervenzellen in steigendem Maße zu Fehlern“, erläutert Janine Kirstein von der Universität Bremen. „Bei Alzheimer kommt es beispielsweise zunehmend zu einer Anhäufung von fehlgefalteten Proteinen, die dann verklumpen und längliche, seilartige Strukturen (fibriläre Abeta-Aggregate) ausbilden.“ Diese „Zugseil-Strukturen“ können große Hirnareale befallen und führen schließlich zu Erkrankungen wie Alzheimer oder auch Parkinson – und im schlimmsten Falle zur Demenz mit allen verbundenen kognitiven Beeinträchtigungen.

Ihrer Arbeitsgruppe ist es nun gelungen, diesen Prozess sichtbar zu machen und vor allem den „Startpunkt“ der Krankheit – die „Nervenzelle 0“ – in Fadenwürmern zu identifizieren.

Mit Hilfe dieses Krankheitsmodells konnten sie zeigen, dass die Aggregation des Abeta Peptids in genau sechs Nervenzellen – den IL2-Neuronen – beginnt und sich von dort aus systematisch auf alle Nervenzellen ausweitet. Sie belegten auch, dass eine gezielte Hemmung der Abeta Aggregation in den IL2-Neuronen die Aggregationskaskade und Übertragung auf andere Neuronen verlangsamt. Zudem konnte eine Reduktion der Toxizität und eine Erhöhung der medianen Lebensspanne bei den Fadenwürmern beobachtet werden.

Die Ergebnisse aus der Forschung lassen es nun zu, auch beim Menschen gezielt auf die Nervenzellen zu fokussieren, in der neurodegenerative Erkrankungen wie Alzheimer beginnen. „Man könnte zum Beispiel einen Marker entwickeln, der einen Rückschluss darüber zulässt, ob die Degeneration bereits begonnen hat“, so Kirstein. „Dementsprechend schneller könnte man dann handeln, um weitergehende Folgen zu vermeiden.“ Diese Erkenntnisse sind damit sowohl für die Diagnostik als auch für die Entwicklung neuer therapeutischer Ansätze hoch relevant.

Referenz:
Universität Bremen
Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity, Progress in Neurobiology 2021; https://www.sciencedirect.com/science/article/pii/S0301008220301623

#alzheimer #parkinson #demenz #neurowissenschaften #nerven #aggregation #gehirn #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurologie Neurowissenschaften Technologie Wissenschaft

Gehirn: mehr Rechenpower und Speicherplatz als vermutet

Nervenzellen kommunizieren miteinander via Synapsen. Deren Leistung dürfte viel höher sein, als bisher vermutet, wie Neurowissenschaftler zeigen. Die Signalübertragung ist dabei umso stärker, je grösser eine Synapse ist. „Mit dieser Erkenntnis schließen wir eine zentrale Wissenslücke der Neurobiologie“, so Kevan Martin von der Universität Zürich: „zudem ist dieses Wissen entscheidend, um zu verstehen, wie Informationen durch die Schaltpläne des Gehirns fließen und somit unser Gehirn funktioniert.“

Um die Synapsenströme zwischen Nervenzellen zu messen, fertigten sie hauchdünne Schnitte eines Mausgehirns an und führten unter dem Mikroskop feine Glaselektroden in zwei benachbarte Nervenzellen der Großhirnrinde ein. Damit konnten sie eine der beiden Nervenzellen künstlich aktivieren und gleichzeitig die Stärke des resultierenden Synapsenstroms in der anderen Zelle messen. Zudem injizierten sie einen Farbstoff, um die verästelten Zellfortsätze im Lichtmikroskop dreidimensional rekonstruieren zu können.

„Damit können nun die Schaltkreise der Großhirnrinde mithilfe von Elektronenmikroskopie exakt kartografiert und deren Informationsfluss am Computer simuliert und interpretiert werden,“ erklärt Gregor Schuhknecht, ETH Zürich: „diese Arbeiten ermöglichen ein besseres Verständnis, wie das Hirn normalerweise funktioniert, und wie «Verdrahtungsdefekte» zu neurologischen Entwicklungsstörungen führen können.“

Mithilfe von mathematischen Analysen konnten die Forschenden auch zeigen, dass Synapsen komplexer sind als bisher angenommen. Sie können nicht nur ein einziges Vesikel mit Botenstoffen aussenden, wie bisher angenommen, sondern mehrere Vesikel an verschiedenen Stellen gleichzeitig. Damit lässt sich auch ihre Signalstärke dynamischer regulieren als bisher gedacht.

Referenzen:
ETH, Universität Zürich; Harvard University
Structure and function of a neocortical synapse; Nature 13.1.2021; https://www.nature.com/articles/s41586-020-03134-2

#gehirn #neurowissenschaften #verknüpfung #neuronen #nervenzellen #synapsen #medizin #medimpressions

Fotocredit: Canva

Kategorien
Genetik Neurowissenschaften Wissenschaft

Neue Therapie für kranke Nervenzellen

Nervenzellen sind langlebig, im Falle von neurodegenerativen Erkrankungen wie der amyotrophen Lateralsklerose (AML) oder der frontotemporalen Demenz (FTD) können sie sich aber nicht mehr regenerieren. Bei der Entstehung solcher Erkrankungen spielt die Verklumpung von Proteinen im Zellkern eine zentrale Rolle. Forscher an der Med-Uni Graz haben gemeinsam mit internationalen Kollegen einen Mechanismus gefunden, der im Normalfall die krankmachende Verklumpung der RNA-bindenden Proteine verhindert.

Bei vielen neurodegenerativen Erkrankungen kommt es im Zellkern von Nervenzellen zu pathologischen Ablagerungen von Proteinen, die das Absterben dieser Zellen auslösen. Die Folge ist eine schrittweise Beeinträchtigung der körperlichen und geistigen Fähigkeiten. Wenn ALS und FTD genetisch veranlagt ist, entstehen sogenannte DPR-Proteine (Dipeptid-Wiederholungsproteine) durch Abschreiben von Hexanukleotid-Wiederholungen im C9orf72-Gen. Das Forscherteam untersuchte, ob diese aggregationsfreudigen DPR-Proteine durch körpereigene Proteine, speziell Importin-Proteine, vor einer Verklumpung geschützt werden können.

Ihre Untersuchungen dieser körpereigenen nuklearen Importrezeptoren belegen, dass solche Proteine tatsächlich die Verklumpung von DPR Proteinen verhindern und deren toxische Wirkung aufheben können. „Diese Entdeckung war für uns faszinierend und könnte therapeutische Auswirkungen haben, da sie darauf hindeutet, dass Therapeutika mit Ähnlichkeiten zu Import Proteinen vielversprechend bei der Behandlung von ALS und FTD sein könnten“, erklärte Tobias Madl, MedUni Graz.  Zur Entwicklung neuer Therapeutika werden aber wohl noch einige Jahre benötigt.

Referenzen:
Med-Uni Graz; LMU, München; University of Pennsylvania; DZNE, München; Universität Zürich
Nuclear Import Receptors Directly Bind to Arginine-Rich Dipeptide Repeat Proteins and Suppress Their Pathological Interactions“, Cell Reports 2020, 33:12
https://www.sciencedirect.com/science/article/pii/S2211124720315278

#aml #ftd #neurodegenerativeerkrankung #nervenzellen #verklumpung #therapie #zellkern #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurologie Wissenschaft

Die (geheime) Kommunikation von Nervenzellen

Wie viele „Mithörer“ eine Nervenzelle im Gehirn hat, wird streng reguliert, zeigt eine internationale Studie. Auch Nervenzellen im Gehirn kommunizieren also hinter vorgehaltener Hand miteinander. 

Die Informationsübertragung zwischen Neuronen erfolgt meist auf chemischem Wege: Auf ein elektrisches Signal hin schüttet die „Sender-Zelle“ einen Neurotransmitter aus; häufig Glutamat-Moleküle. Diese wandern durch den synaptischen Spalt zur Empfänger-Zelle. Dort docken sie an und erzeugen im Empfänger-Neuron eine elektrische Reaktion.

Doch die Nervenzellen im Gehirn sind sehr dicht gepackt. Es besteht also die Gefahr, dass die Moleküle nicht nur bestimmte Neuron erreichen, sondern auch andere Neuronen in der Nachbarschaft reizen. Hier kommt die „vorgehaltene Hand“ ins Spiel: Spezialisierte Zellen im Gehirn, die Astrozyten, nehmen nämlich das ausgeschüttete Glutamat rasch wieder auf und schirmen die Kommunikation ab. Dazu entsenden sie Fortsätze in die Nähe von Synapsen, die sogenannten perisynaptischen Astrozytenfortsätze (PAPs). PAPs verfügen über spezialisierte Transporter, die wie kleine Staubsauger das Glutamat um die Synapsen entfernen. 

Wie effektiv dieser Mechanismus funktioniert, wird streng reguliert: PAPs ziehen sich bei gewissen Lernprozess zurück. So steigt die Wahrscheinlichkeit, dass benachbarte Zellen ebenfalls angeregt werden: die Signalübertragung wird weniger exklusiv. An manchen Synapsen scheint die Kommunikation per se weniger diskret zu sein. In einer weiteren Studie wurde gezeigt, dass Senderzellen ihr Glutamat oft in der Nähe bestimmter Strukturen aussenden, die lückenhafter kontrolliert werden, so dass es in deren Nachbarschaft häufiger zur Erregung weiterer Nervenzellen kommt. 

Referenzen:
UCL; Universität Bonn; Universität Bordeaux; Universität Milton Keynes, UK; 

LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia; Neuron; DOI: https://doi.org/10.1016/j.neuron.2020.08.030; Local efficacy of glutamate uptake decreases with synapse size; Cell Reports; DOI: https://doi.org/10.1016/j.celrep.2020.108182

#neurotransmitter #synapsen #gehirn #kommunikation #signalübertragung #paps #medizin #medimpressions 

Fotocredit: Canva

Kategorien
Neurologie Wissenschaft

Wie Hirnzellen umlernen

Menschen wie Tiere haben die Fähigkeit, sich immer wieder auf neue Situationen einzustellen. Die biologischen Prozesse, die diese Leistungen ermöglichen, sind noch sehr unvollständig verstanden. Das Institut für Hirnforschung der Universität Zürich illustrierte nun im Mausmodell, welche Nervenzellen im Gehirn dabei das Kommando haben.

Für die Versuche simulierten die Forscher in Mäusen einen Prozess des Umlernens und untersuchten auf Ebene einzelner Nervenzellen, was dabei im Gehirn passiert. Zunächst trainierten sie die Tiere darin, nach einer Berührung der Tasthaare mit grobkörnigem Sandpapier zu schlecken – was zu einer Belohnung mit Zuckerwasser führte. Bei Berührung mit feinkörnigem Sandpapier hingegen durften sie nicht schlecken, sonst löste dies ein unangenehmes Geräusch aus. Hatten die Mäuse dies verstanden, wurde der Spiess umgedreht: Nun gab es die Belohnung bei feinkörnigem Sandpapier, was diese schnell erlernten.

Dabei erwies sich, dass ein Teil der Grosshirnrinde, eine Gruppe von Hirnzellen des orbitofrontalen Kortex während des Umlernens besonders aktiv war. Diese Zellen haben lange Fortsätze, die bis in das Areal der sensorischen Nervenzellen reichen, die bei Mäusen Tastreize verarbeiten. In diesem Areal folgten die Zellen zunächst dem alten Aktivitätsmuster, ein Teil passte sich dann allerdings der neuen Situation an. Die Plastizität dieser Zellen und die Instruktion durch die höhere Instanz des orbitofrontalen Kortex scheint demnach für die Flexibilität des Verhaltens entscheidend zu sein. Wurden diese ausgeschaltet, funktionierte das Umlernen nicht.

Die Forscher nehmen an, dass sich diese fundamentalen Prozesse in ähnlicher Weise auch im menschlichen Gehirn abspielen und die Forschungsergebnisse zum besseren Verständnis von Hirnkrankheiten beitragen können, bei denen diese Flexibilität gestört ist, wie beispielsweise bei Formen von Autismus und Schizophrenie.

Referenzen:

Universität Zürich https://www.media.uzh.ch/de/medienmitteilungen/2020/Flexibles-Handeln.html

Value-guided remapping of sensory cortex by lateral orbitofrontal cortex, Nature 2020; https://doi.org/10.1038/s41586-020-2704-z

#gehirn #plastizitaet #nervenzellen #grosshirnrinde #hirnforschung #verhalten #lernen #medizin #medimpressions

Fotocredit: Canva

Kategorien
Leben Neurologie Wissenschaft

REM-Schlaf beeinflusst Essverhalten

Viele verschiedene Hirnregionen zeigen eine erhöhte Aktivität während des REM-Schlafs, einer Schlafphase, in der wir intensiv träumen und die durch schnelle Augenbewegungen gekennzeichnet ist. Auch der sogenannte laterale Hypothalamus, eine kleine, evolutionär konservierte Struktur bei allen Säugetieren im Zwischenhirn, zeigt erhöhte Aktivität während des REM-Schlafs. Warum, ist weitgehend unbekannt. Im Wachzustand orchestrieren die Nervenzellen aus diesem Hirnareal den Appetit und die Nahrungsaufnahme und sie spielen eine wichtige Rolle bei Motivation und Suchtverhalten.

Forschende der Universität Bern und des Inselspitals, Universitätsspital Bern, haben nun entdeckt, dass die Aktivität dieser Nervenzellen während des REM-Schlafs, unser Essverhalten reguliert. Wird diese Aktivität bei Mäusen durch Lichtimpulse unterdrückt, ist ihr Appetit gestört und die Mäuse nehmen weniger Nahrung zu sich.

Das bedeutet, dass der REM-Schlaf nötig ist, um die Nahrungsaufnahme stabil zu halten, so die Forscher, und dass nicht die Schlafmenge allein wichtig ist, damit wir uns wohl fühlen, sondern dass es auch auf die Schlafqualität ankommt.

Der entdeckte Zusammenhang zwischen der Aktivität der Zellen im REM-Schlaf und dem Essverhalten könnte dazu dienen, neue Therapieansätze bei Essstörungen zu entwickeln. Zudem könnten sie auch für die Motivation und das Suchtverhalten von Bedeutung sein.

Referenzen:
Universität Bern, Inselspital Bern
Pressemitteilung
REM sleep stabilizes hypothalamic representation of feeding behavior, P.N.A.S., 31 July 2020,
https://doi.org/10.1073/pnas.1921909117

#schlaf #essverhalten #rem #hypothalamus #nahrung #appetit #nervenzellaktivität #schlafqualität #essstörung #inselspital #unibern

Fotocredit: Canva

Kategorien
Gastroenterologie Immunologie Neurologie Wissenschaft

Sprechen Nervenzellen mit Darmbakterien?

Verschiedene Krankheiten des Verdauungstrakts, zum Beispiel gravierende Darmentzündungen beim Menschen, sind eng an Störungen der natürlichen Beweglichkeit des Darms gekoppelt. Welche Rolle die Peristaltik in Verbindung mit dem Mikrobiom – also die natürliche mikrobielle Besiedlung des Verdauungstrakts – spielt, wird derzeit intensiv untersucht. Unklar ist insbesondere, wie die Kontraktionen gesteuert werden und wie die als Schrittmacher agierenden Zellen des Nervensystems mit den Mikroorganismen zusammenarbeiten.

Einem Forschungsteam aus der Arbeitsgruppe Zell- und Entwicklungsbiologie an der Christian-Albrechts-Universität zu Kiel (CAU) gelang es nun am Beispiel des Süßwasserpolypen Hydra erstmals zu belegen, dass stammesgeschichtlich alte Neuronen und Bakterien tatsächlich direkt miteinander kommunizieren. Überraschenderweise stellten die Forschenden fest, dass sich die Nervenzellen über Immunrezeptoren, also gewissermaßen mithilfe der Mechanismen des Immunsystems, mit den Mikroorganismen austauschen. Auf dieser Grundlage formulierten die Wissenschaftler die Hypothese, dass das Nervensystem bereits von Beginn der Evolution an nicht nur sensorische und motorische Funktionen übernimmt, sondern auch für die Kommunikation mit den Mikroben mitverantwortlich ist.
„Möglicherweise ist es so, dass Nervenzellen erfunden wurden, um die Kommunikation mit den für den Körper so wichtigen Mikroben überhaupt erst zu ermöglichen“, so die Untersucher.

Sollte diese Hypothese zutreffen, eröffnet sie auch völlig neue Perspektiven auf die Entstehung und künftige Behandlung von menschlichen Darmerkrankungen, die auf einer gestörten Beweglichkeit des Darms beruhen. Denn ein Zusammenhang zwischen dem Zustand des Mikrobioms und den Störungen der Darmbeweglichkeit besteht sehr wahrscheinlich auch beim Menschen. „Zukünftig müssen wir also auch die Rolle der Nervenzellen bei der Entstehung und Therapie von entzündlichen Darmerkrankungen berücksichtigen“, meinen die Wissenschaftler. Je besser die Forschenden deren Beteiligung an der Krankheitsentstehung verstehen, desto näher rücken therapeutische Eingriffe in das Mikrobiom, die eine gesunde Darmbeweglichkeit und damit eine Behandlung von chronischen Darmerkrankungen erlauben könnten.

Referenzen:
Christian-Albrechts-Universität zu Kiel
Pressemitteilung: Entstanden Nervenzellen um mit Mikroben zu sprechen?
https://www.uni-kiel.de/de/detailansicht/news/168-klimovich-pnas
Originalpublikation: Thomas C.G. Bosch et al: Prototypical pacemaker neurons interact with the resident microbiota, PNAS First published 09 July 2020 https://doi.org/10.1073/pnas.1920469117

#cau #nervenzellen #mikrobiom #darmerkrankungen #reizdarm #ibs #darmentzündung #mikroorganismen #immunsystem #medizin #medimpressions

Fotocredit: Canva