Kategorien
Molekulare Medizin Neurologie Pädiatrie Wissenschaft

Neuroblastom: Welcher Faktor begünstigt Rückfälle?

Neuroblastome sind nach Hirntumoren die häufigsten soliden Tumoren bei Kindern und entstehen aus unreifen Vorläuferzellen des Nervensystems. In einigen Fällen bilden sich Neuroblastome ohne jegliche Therapie komplett zurück. Bei etwa der Hälfte der Patienten kann jedoch auch eine hochintensive Therapie das Wachstum nicht verhindern.

Bösartige Neuroblastome nutzen einen Trick, um unendlich teilungsaktiv zu bleiben: Sie verlängern ihre Chromosomenenden (Telomere), so dass die Zellen quasi „unsterblich“ werden. Auf molekularer Ebene machen Krebszellen das auf zwei Wegen, sie überaktivieren das Enzym Telomerase oder sie verlängern die Chromosomenenden durch Neuanordnung ihrer Telomerabschnitte (alternativer Mechanismus). In beiden Fällen haben die jungen Patienten eine schlechte Prognose.

Das bestätigten auch die Daten von 760 Neuroblastom-Patienten einer eben publizierten Studie. Sie zeigt, dass bei fast der Hälfte der Patienten nicht die Überaktivierung der Telomerase, sondern der alternative Mechanismus für die Telomerverlängerung verantwortlich ist. Die Wissenschaftler untersuchten auch erstmals, welche molekularen Prozesse diesen speziellen Verlängerungsmechanismus begünstigen.

Die Erkenntnisse daraus könnte man nutzen, um bessere Therapien zu entwickeln. Bisher werden die jungen Patienten alle mit den gleichen Chemotherapie-Protokollen behandelt. Diese Therapien greifen vor allem schnell wachsende Krebszellen an. Krebszellen mit dem alternativen Mechanismus wachsen aber eher langsam, sind extrem widerstandsfähig und kehren wieder. Im nächsten Schritt wird nun daran gearbeitet, eine spezifische Therapie für diese Tumoren zu entwickeln, die vielleicht auch bei anderen Krebsarten, die diesen Telomer-Verlängerungsmechanismus nutzen, zum Einsatz kommen könnte.

Referenz:
DKFZ, KiTZ, Heidelberg; Universität HD
Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome; Nature Communications 2021; https://www.nature.com/articles/s41467-021-21247-8

#neuroblastom #tumor #kinder #therapie #telomere #krebszellen # #medizin #medimpressions

Fotocredit: Canva

Kategorien
Immunologie Neurologie Wissenschaft

Impfen gegen Multiple Sklerose?

Eine aktuelle Studie zieht gerade viel Aufmerksamkeit auf sich, denn wenige Wochen nach der Einführung der ersten mRNA-basierten Corona-Impfstoffe wird von einer mRNA-Impfung gegen Multiple Sklerose (MS) berichtet.

Anders als bei der Corona-Impfung soll aber nicht das fremde Antigen bekämpft werden, sondern das körpereigene Immunsystem wieder an entzündungsauslösende Proteine (Autoantige gegen körpereigene Strukturen) gewöhnt werden. Das Prinzip ist vergleichbar mit der Desensibilisierung gegen Allergien (z. B. bei Pollenallergikern). Dabei wird durch eine gezielte Zufuhr des auslösenden Stoffes die immunologische Überempfindlichkeit abgebaut, das Immunsystems lernt, das Allergen wieder zu tolerieren.

Forschern ist es an einem MS-Mausmodell gelungen, durch die kontrollierte Zufuhr des auslösenden Autoantigens (ein Myelinprotein) die autoimmune Gehirn- und Rückenmarksentzündung (Enzephalomyelitis) zu verhindern bzw. sogar rückgängig zu machen. Im Ergebnis konnte in mehreren MS-Mausmodellen die Erkrankung erfolgreich unterdrückt und eine Demyelinisierung (Angriff auf die Isolierschicht der Nervenfasern) verhindert werden; erkrankte Tiere erholten sich.

Dennoch handelt es sich nicht um eine greifbare Therapieoption, die am Menschen schnell umgesetzt werden kann. Die Entwicklung mit dem Ziel, das Immunsystem „toleranter“ zu machen, ist komplexer als der Ansatz, das Immunsystem gegenüber einem Krankheitserreger auf Angriff zu trimmen. Aber die Entwicklung dieses Grundprinzips belegt zumindest das hohe Innovationspotenzial dieses Forschungszweigs und könnte ein erster wichtiger Schritt für die Entwicklung einer zielgerichteten Therapie sein.

Referenz:
Universität Mainz
Pressemeldung Deutsche Gesellschaft f. Neurologie: Erste tierexperimentelle Daten zur mRNA-Impfung gegen Multiple Sklerose; A noninflammatory mRNA vaccine for treatment of experimental autoimmune encepha-lomyelitis, Science 2021; 371: 145–153, https://science.sciencemag.org/content/371/6525/145.editor-summary

#multiplesklerose #ms #impfung #desensibilisierung #immunsystem #mRNA #behandlung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Genetik Gesundheitsökonomie Neurowissenschaften Wissenschaft

Risikofreude zeigt sich im Gehirn

Riskante Verhaltensweisen wie Rauchen, Alkohol- und Drogenkonsum, zu schnelles Autofahren oder häufig wechselnde Sexualpartner ziehen enorme Konsequenzen nach sich.

Ein internationales Forschungsteam hat deshalb untersucht, welche genetischen Ausprägungen mit Risikoverhalten korrelieren und hat dazu genetische Informationen mit Gehirnscans von über 25000 Personen kombiniert, um Unterschiede in der Anatomie und Funktion von Gehirnarealen festzumachen.

Das Ergebnis: spezifische Ausprägungen zeigten sich in mehreren Hirnarealen: Im Hypothalamus, wo über die Ausschüttung von Hormonen wie Dopamin die vegetativen Funktionen des Körpers gesteuert werden, im Hippocampus, der für das Abspeichern von Erinnerungen wesentlich ist, im Dorsolateralen Präfrontalen Cortex, der ein wichtige Rolle bei Selbstkontrolle und kognitivem Abwägen spielt, in der Amygdala, die unter anderem die emotionale Reaktion auf Gefahren steuert, sowie im Ventralen Striatum, das bei der Verarbeitung von Belohnungen aktiv wird.

Überrascht war das Team von den anatomischen Unterschieden, die sie im Kleinhirn entdeckten. Dieses wird in Studien zu Risikoverhalten normalerweise nicht einbezogen da es hauptsächlich in feinmotorische Funktionen involviert ist. An dieser Hypothese kamen in den letzten Jahren jedoch Zweifel auf, die durch die aktuelle Studie neuen Auftrieb erhalten. „Es scheint, als würde das Kleinhirn in Entscheidungsprozessen wie dem Risikoverhalten eine wichtige Rolle spielen,“ so Gökhan Aydogan von der Universität Zürich: „Im Hirn von risikobereiteren Personen fanden wir weniger graue Substanz in diesen Arealen. Wie diese graue Substanz das Verhalten beeinflusst, muss allerdings noch untersucht werden.“ Weiterer Forschung bedarf es auch der Frage wie das Zusammenspiel von Umwelt und Genen unser Risikoverhalten beeinflusst.

Referenzen:
Universität Zürich, Universität Amsterdam, University of Pennsylvania
Genetic Underpinnings of Risky Behaviour Relate to Altered Neuroanatomy; Nature Human Behavior 2021; https://www.nature.com/articles/s41562-020-01027-y

#risikoverhalten #gehirn #gene #gehirnscans #vererbung #neurowissenschaften #neuroanatomie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Immunologie Infektiologie Psychiatrie Wissenschaft

Gehirn-Immunzellen können Depressionen verursachen

„Es gibt eine Gruppe von depressiven Menschen, die ein klinisch auffälliges Entzündungsprofil zeigt, ohne dass es dafür eine Erklärung gibt, wie etwa eine akute Infektion“, berichtet der österreichische Psychologe Michael Fritz. Bisher war nicht zu klären, ob die Entzündungsreaktionen als Ursache des depressiven Verhaltens in Frage kommen oder die Mikroglia (Immunzellen des Gehirns) als Folge der Depressionen aktiviert werden.

Seine Untersuchungen am Tiermodell, durchgeführt an der Linköping Universität in Schweden, ergaben nun, dass aktivierte Mikrogliazellen eine große Menge an Entzündungsbotenstoffen aussenden. Einer dieser Botenstoffe ist Interleukin-6. Dieser steigt laut Studien bei depressiven Patienten umso höher an, je stärker die Suizid-Intention ist. Neben Interleukin-6 schütten die aktivierten Mikrogliazellen auch das Hormon Prostaglandin E2 aus und reduzieren damit die Erregbarkeit der umliegenden Nervenzellen im Gehirn. Die Tiere zeigten daraufhin depressives Verhalten. Wenn die Forscher die Mikrogliazellen jedoch wieder hemmten, war dies nicht mehr der Fall.

Bei Menschen könnten die Mikroglia etwa durch virale Entzündungen, chronische Erkrankungen oder Krebs aktiviert werden, so Fritz: „Vor allem Infektionen, die eher mild verlaufen sind mit einer Manifestation von Depression im späteren Leben assoziiert.“ Dazu gehören etwa Infektionen mit Herpes-simplex-Viren, die Fieberblasen verursachen, Epstein-Barr-Viren, die Krebs auslösen können, und Feuchtblattern-Viren (Varizella-Zoster-Viren). Warum solche Infektionen bei manchen zu Depressionen führen, in der großen Mehrzahl der Menschen aber nicht, muss wissenschaftlich erst geklärt werden.

Referenz:
Linköping University; Nat Inst Drug Abuse, Baltimore; University of Barcelona
Pressemeldung Science APA 27.1.2021; https://science.apa.at/power-search/2251350191652050077
Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons; Immunity 2021, https://doi.org/10.1016/j.immuni.2020.12.016

#depression #gehirn #neurotransmitter #infektion #mikroglia #verhalten #viren #medizin #medimpressions

Fotocredit: Canva

Kategorien
Digital Health Neurologie Wissenschaft

Oberflächen-Elektrostimulation verhindert Zittern

Patienten mit Essentiellem Tremor leiden an einem rhythmischen Zittern, vornehmlich der Hände. Dieses lässt sich durch tiefe Hirnstimulation mittels eines implantierten Hirnschrittmachers wirksam behandeln. Eine aktuelle Studie zeigt jetzt, dass auch eine nicht-invasive Stimulation mit Oberflächenelektroden die Intensität des Händezitterns deutlich reduzieren kann.

Dazu wurden Patienten feine Elektroimpulse über Klebeelektroden auf der Kopfhaut verabreicht. Wobei die patientenindividuelle Frequenz und Amplitude des Händezitterns mittels eines Beschleunigungssensors, eines sogenannten Accelerometers am Mittelfinger der Probanden gemessen wurde. In Abhängigkeit von diesen Messungen wurde das Gehirn dann mit minimalem Wechselstrom stimuliert. Es zeigte sich, dass bei der Mehrzahl der Patienten das Zittern während der randomisiert wiederholten, 30 Sekunden dauernden Stimulation zurückging oder gänzlich aufhörte.

Für die Steuerung der Stimulation in Echtzeit wurde eine neue mathematische Methode entwickelt, um die kontinuierliche Anpassung an das variable Zittern zu ermöglichen. Der Algorithmus ist so elegant, dass für seine Anwendung nur eine vergleichsweise geringe Rechenleistung nötig ist. Erstautor Sebastian Schreglmann, Uniklinikum Würzburg; „Für die Vision eines nicht-invasiven Hirnschrittmachers ist dies ein wesentlicher Punkt – dadurch könnte ein kleiner, zum Beispiel am Gürtel zu tragender Controller zur Steuerung ausreichen.“ Eine Anwendung dieses Algorithmus ist auch bei anderen Erkrankungen, die auf einer fehlgeleiteten rhythmischen Aktivität im Gehirn basieren, prinzipiell vorstellbar.


Referenzen:
Uniklinikum Würzburg, ICL London, UCL London
Non-invasive suppression of essential tremor via phase-locked disruption of its temporal coherence; Nat Commun 2021; 12:363; https://www.nature.com/articles/s41467-020-20581-7

#elektrostumulation #zittern #tremor #elektroden #gehirn #elektroimpulse #hirnschrittmacher #medizin #medimpressions

Fotocredit: Canva

Kategorien
Immunologie Interne Medizin Neurologie Wissenschaft

Verbindung zwischen Multipler Sklerose und Sonnenlicht

Schon länger bekannt ist, dass die Wahrscheinlichkeit an Multipler Sklerose (MS) zu erkranken, zunimmt, je mehr man sich dem Nord- oder Südpol nähert. Beeinflusst die Sonne nur die Wahrscheinlichkeit, überhaupt an MS zu erkranken? Oder sind einzelne Menschen auch unterschiedlich schwer betroffen, je nachdem wo sie wohnen? Wissenschaftler des Kompetenznetz MS (KKNMS) und des Sonderforschungsbereiches Multiple Sklerose der DFG beantworten nun beide Fragen mit „Ja“. Sonnenlicht beeinflusst den Schweregrad der MS offenbar positiv. Das zeigt die Analyse von nahezu 2000 MS-Patienten.

Die Ergebnisse deuten darauf hin, dass UV-Licht und MS schon auf einem relativ kleinen Gebiet wie Deutschland mit einer Nord-Süd-Ausdehnung von knapp 1000 km zusammenhängen. Die aktiven Entzündungsherde in Gehirn und Rückenmark und auch der Beeinträchtigungsgrad nehmen von Süd- nach Norddeutschland im Mittel zu. Im Gegenzug nimmt der saisonbereinigte Vitamin D-Spiegel gegen Norden hin ab. Doch Vitamin D allein kann den Effekt nicht erklären. Die Forscher fanden heraus, das UV-Licht im Körper von MS-Patienten ganz ähnliche Prozesse auslöst wie das Medikament Interferon. Wurden Patienten zuvor mit Interferon-beta behandelt, wirkte auch das Sonnenlicht nicht mehr. Offenbar kann der Signalweg kann nur einmal angeregt werden – entweder durch Interferon oder UV-Licht.

Trotz des Nutzens gilt für MS-Patienten: übermäßige UV-Strahlung kann schädlich sein und die Entstehung von Hautkrebs fördern, insbesondere bei hellhäutigen und rothaarigen Menschen. Ein Mehr an Sonnenlicht erwies sich für diese Gruppe nicht nur für die Haut, sondern auch für die MS schädlich. Pro Tag, so der Expertenrat, ist eine halbe Stunde Sonne für die meisten Menschen sinnvoll, auch und gerade dann, wenn sie unter MS leiden.

Referenzen:
KKNMS, Münster; Deutsche Forschungsgemeinschaft

Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity. PNAS 2021 Jan 5;118(1), https://www.pnas.org/content/118/1/e2018457118

#multiplesklerose #ms #sonnenlicht #vitamind #interferon #prävention #uvlicht #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurowissenschaften Pädiatrie Psychologie Wissenschaft

Spielen bringt Väter und Kinder auf gleiche Wellenlänge

Kinder erwerben wichtige soziale Kompetenzen durch Interaktionen mit ihren Eltern. Was dabei im Gehirn passiert, erforschten zwei Wiener Entwicklungspsychologinnen. Erst kürzlich zeigten sie, dass sich während sozialer Interaktion die rhythmische Gehirnaktivität von Müttern und Kindern gegenseitig anpasst. In einer aktuellen Studie gingen sie nun der Frage nach, ob dieser Effekt auch zwischen Vätern und Kindern eintritt.

In der neuen Studie haben fünf bis sechs Jahre alte Kinder mit ihren Vätern gemeinsam oder getrennt Puzzles gelöst. Während des Spiels wurde durch funktionelle Nah-Infrarotspektroskopie (fNIRS) gleichzeitig die Gehirnaktivität von Vater und Kind abgeleitet. Bei dieser Methode werden Änderungen der Sauerstoffsättigung in der äußersten Schicht des Gehirns erfasst. Eine Aktivierung in diesen Regionen steht im Zusammenhang mit dem Fassen gemeinsamer Absichten, gegenseitiger Perspektivenübernahme sowie Selbstregulation. Diese Prozesse sind besonders relevant für soziale Interaktionen und entwickeln sich im Vorschulalter.

Beobachtet wurde, dass eine wechselseitige Anpassung der Gehirnaktivität von Vater und Kind nur dann stattfand, wenn beide miteinander das Puzzle lösten. Die Anpassung der Gehirnaktivität war bei jenen Vater-Kind-Paaren höher, in welchen sich der Vater stärker als fürsorglicher und involvierter Vater identifizierte.

Interessanterweise waren die beobachteten Verhaltensmuster bei den Vater-Kind-Paaren anders als in den Mutter-Kind-Paaren. Während die Anpassung der Gehirnaktivität bei den Vater-Kind-Paaren von der Identifikation des Vaters mit der Vaterrolle abhing, war bei den Mutter-Kind-Paaren entscheidend, ob beide in der Spielsituation aufeinander eingingen.

Referenzen:
Universität Wien, Universität Göttingen, Universität Erlangen-Nürnberg, Universität Potsdam, University of Essex
Interpersonal Neural Synchrony During Father–Child Problem Solving: An fNIRS Hyperscanning Study; Child Development 2021;
https://srcd.onlinelibrary.wiley.com/doi/full/10.1111/cdev.13510?af=R

#spiel #interaktion #gehirn #gehirnaktivität #synchronisation #väter #neurologie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurologie Orthopädie Technologie Wissenschaft

Neurofeedback erleichtert das Tragen von Prothesen

Obwohl die Prothesentechnik ständig Fortschritte macht, sind beinamputierte Personen nicht immer zufrieden mit ihrer Prothese. Ein häufiger Grund dafür ist, dass die Personen das Gewicht der Prothese als zu hoch empfinden. Dies, obwohl Beinprothesen tatsächlich in der Regel weniger als halb so schwer sind als natürliche Gliedmaßen. Schweizer Forschende konnten nun zeigen, dass eine Verbindung der Prothesen mit dem Nervensystem hilft, das Prothesengewicht als geringer wahrzunehmen, was der Akzeptanz der Prothesen sehr zuträglich ist.

So wurden in den vergangenen Jahren Prothesen entwickelt, welche dem Nervensystem des Trägers ein Feedback geben. Dies geschieht über in den Oberschenkel implantierte Elektroden, die mit den dort vorhandenen Beinnerven verbunden werden. Informationen von Tastsensoren unter der Fußsohle sowie von Winkelsensoren im elektronischen Prothesen-Kniegelenk werden dazu in Stromimpulse umgewandelt und an die Nerven weitergegeben.

Dem Gehirn einer oberschenkelamputierten Person wird so vorgegaukelt, dass die Beinprothese ihrem eigenen Bein ähnlich ist. In einer im letzten Jahr veröffentlichten Studie zeigte das Team bereits, das sich Träger solcher Neurofeedback-Prothesen sicherer und mit weniger Kraftanstrengung fortbewegen können.

Dass sich Neurofeedback nicht nur in einer empfunden Gewichtserleichterung bemerkbar macht, sondern sich auch positiv auf das Gehirn auswirkt, bestätigten die Wissenschaftler nun außerdem mit einer motorisch-kognitiven Aufgabe, bei der der Proband beim Gehen Wörter mit fünf Buchstaben rückwärts buchstabieren sollte. Das sensorische Feedback ermöglichte ihm nicht nur einen schnelleren Gang, sondern er schnitt auch bei der Buchstabierübung besser ab.

Referenz:
ETH Zürich
Lightening the perceived prosthesis weight with neural embodiment promoted by sensory feedback. Current Biology, 7.1.2021, https://www.sciencedirect.com/science/article/abs/pii/S0960982220317826

#beinprothese #neurofeedback #prosthetik #neurologie #sensorik #gehirn #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurologie Wissenschaft

„Wettervorhersage“ über epileptische Anfälle

Ein internationales Forschungsteam hat eine neue Methode entwickelt, um epileptische Anfälle frühzeitig vorhersagen zu können. Bisher gelang das nur mit mäßigem Erfolg. Das zwingt die Betroffenen täglich Medikamente zur Hemmung der neuronalen Erregbarkeit einzunehmen, die mit einer Vielzahl an möglichen Nebenwirkungen einhergehen. Manchmal werden auch neurochirurgische Eingriffe durchgeführt, um den epileptischen Fokus, das heißt den Ausgangspunkt der Gehirnanfälle, zu entfernen.  

Die epileptische Aktivität kann anhand der elektrischen Aktivitätsdaten im Gehirn gemessen werden, die mittels Elektroenzephalographie aufgezeichnet werden. Diese Daten können verwendet werden, um interiktale Entladungen zu identifizieren – flüchtige Entladungen, die zwischen den Anfällen auftreten, diese jedoch nicht unmittelbar auslösen. Zudem wiederholen sich epileptische Anfälle in Clustern und Zyklen. Um festzustellen, ob die interiktalen Entladungen diese Zyklen erklären können, zeichneten nun im Hirn von Patienten implantierte Geräte die Hirnaktivitäten während mindestens sechs Monaten auf. Anhand einer ausgeklügelten statistischen Analyse erlauben diese Aufzeichnungen jetzt eine zuverlässige, mehrtägige Vorhersage eines möglichen nächsten Anfalls.

Dank der Methode konnte ein Phänomen nachgewiesen werden, das als «proiktaler Zustand» bekannt ist, in dem eine hohe Wahrscheinlichkeit besteht, dass ein Anfall auftritt.  So wie sich Regen bei Auftreten bestimmter Wettersituationen vorhersagen lässt. Anhand von Daten zur Gehirnaktivität, die über Zeiträume von mindestens sechs Monaten erfasst wurden, war die Anfallsprognose bei zwei Dritteln der Patienten aussagekräftig. Der Analyseansatz ermöglicht die Übertragung von Daten in Echtzeit auf einen Server und zwar mit einem Gerät, das so klein ist, dass es direkt in die Hirnschale implantiert werden kann.

Referenzen:
Universität Bern, Universität Genf, University of California

Forecasting seizure risk in adults with focal epilepsy: adevelopment and validation study. The Lancet Neurology, December 17, 2020, https://doi.org/10.1016/S1474-4422(20)30414-2

#neurologie #epilepsie #anfall #gehirn #anfallsprognose #gehirnaktivität #neuronen #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurologie Psychologie Wissenschaft

Was soziale Isolation mit dem Hirn macht

Wie wirken sich soziale Distanzierung und Selbstisolation auf das Gehirn aus? Ein internationales Forschungsteam unter der Leitung von Erin Schuman vom Max-Planck-Institut für Hirnforschung untersuchte diese Fragestellung in Zebrafischen und entdeckten ein Hirnmolekül, das als „Thermometer“ für die Anwesenheit anderer in der Umgebung eines Tieres fungiert. Zebrafische „spüren“ die Anwesenheit von Artgenossen über spezifische mechanische Reize und Wasserbewegungen – dies aktiviert das Gehirnhormon.

„Wir fanden eine Handvoll Gene, deren Expression bei Fischen, die in sozialer Isolation aufgezogen wurden, konsequent verändert waren. Eines davon kodiert das Nebenschilddrüsenhormon 2 (Pth2), ein relativ unbekanntes Peptid im Gehirn. Überraschenderweise spiegelte die Expression von pth2 nicht nur die Anwesenheit anderer Zebrafische, sondern auch deren Populationsdichte wider. Als Zebrafische isoliert wurden, verschwand pth2 im Gehirn, aber das Expressionsniveau stieg – wie ein Thermometerstand – an, wenn sich andere Fische in demselben Becken befanden“, so die Forscher. Nach nur 30 Minuten Anwesenheit von Artgenossen kam es zu einer signifikanten Erholung der pth2-Werte.

So wie Menschen berührungsempfindlich sind, scheinen Zebrafische besonders auf die Schwimmbewegungen anderer Fische zu reagieren. „Es ist klar, dass die Anwesenheit von Artgenossen dramatische Auswirkungen auf den Zugang eines Tieres zu Ressourcen und letztlich auf sein Überleben haben kann. Daher ist es wahrscheinlich, dass dieses Neurohormon das ‚soziale Gehirn‘ und Verhaltensnetzwerke reguliert“, schlussfolgern die Forscher.

Referenzen: Max Planck Institut für Hirnforschung
The Neuropeptide Pth2 Dynamically Senses Others via Mechanosensation; Nature 2020,https://www.nature.com/articles/s41586-020-2988-z

#isolation #biologie #verhalten #psychologie #einsamkeit #gehirn #neuropeptid #medizin #medimpressions

Fotocredit: Canva