Kategorien
Neurowissenschaften Wissenschaft

Ursache der Mikrozephalie entschlüsselt

Ein Forschungsteam am IMBA (Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften) entwickelte eine bahnbrechende Organoid-Technologie, um Hunderte Gene auf einmal im Hinblick auf menschliche Gehirnkrankheiten zu untersuchen. Ein wichtiger Meilenstein war 2013 die Entwicklung von Hirnorganoiden im Labor von Jürgen Knoblich. Bislang gab es jedoch keine Möglichkeit, diese systematisch nach Genen zu durchsuchen, die für Erkrankungen des Gehirns verantwortlich sind. 

Eine neue Methode namens CRISPR-LICHT (Lineage Tracing at Cellular resolution in Heterogenous Tissue) erlaubt es Forschern erstmals, Hunderte von Mutationen in Gehirnorganoiden gleichzeitig zu erzeugen und parallel ihre Wirkung auf die Entwicklung bestimmter Zellpopulationen im Gehirn zu untersuchen. „Unser Ansatz kombiniert die Genschere CRISPR-Cas9 mit einer doppelten Barcoding-Methode, bei der wir jede Zelle im Organoid und die Zellen, von denen sie abstammt mit einer einzigartigen genetischen Adresse versehen. So erschließt sich für uns eine Art ´Zell-Stammbaum´, und wir können feststellen, welchen Ursprung die Zellen in einem Organoid haben. Durch die CRISPR-Cas9- Methode erzeugen wir nun Mutationen und untersuchen, wie sich dieser Stammbaum verändert,“ so die Forscher.

In Zusammenarbeit mit der Medizinischen Universität Wien untersuchte das Team die Mikrozephalie, eine genetische Störung, bei der Patienten schwere Entwicklungsstörungen erleiden, weil das Gehirn nicht zur richtigen Größe heranwächst. Sie stellten fest, dass ein bestimmter Signalweg in den Proteinfabriken der Zelle, dem sogenannten Endoplasmatischen Retikulum, für das gesunde Wachstum im Gehirn ausschlaggebend ist. Kommt es hier zu einem Defekt, bilden bestimmte Nervenzellen weniger Zell-Nachkommen und das Gehirn bleibt zu klein. 

Referenzen:
IMBA, Wien; A human tissue screen identifies a regulator of ER secretion as a brain size determinant, Science 29. Okt. 2020; https://science.sciencemag.org/content/early/2020/10/28/science.abb5390

#mikrozephalie #crisprlicht #gehirn #organoid #gehirnkrankheiten #endoplasmatischesreticulum #medizin #medimpressions 

Fotocredit: Canva

Kategorien
Neurowissenschaften Wissenschaft

Regulator der Gehirnplastizität entdeckt

Die postnatale Entwicklung des Gehirns ist nach der Geburt durch zeitlich begrenzte, funktionsspezifische Fenster hoher Plastizität gekennzeichnet. Diese lernsensiblen Phasen treten auf, indem bestimmte Bereiche des Gehirns durch Reifungs- und Differenzierung-Prozesse weiter ausgebaut werden und somit leicht und schnell neuronale Verknüpfungen entstehen, die die Plastizität des Gehirns erhöhen. Der natürliche Spracherwerb bei Säuglingen ist das bekannteste Beispiel für so eine sensible Phase.

Die neuronale Plastizität gibt unserem Gehirn die Möglichkeit, sich das ganze Leben lang an neue Anforderungen anzupassen. Sie ist im erwachsenen Gehirn jedoch oft eingeschränkt, so dass Lernprozesse mühsamer ablaufen. Um zelluläre und molekulare Mechanismen zu identifizieren, die diese sensiblen Phasen öffnen und wieder schließen und im Zusammenhang mit dem Altern stehen, untersuchten Forscher die Plastizität der visuellen Hirnrinde (visueller Kortex) bei Mäusen.

Dabei haben sie die Rolle einer kleinen microRNA (miR-29) in diesen lernsensiblen Phasen der Plastizität aufgedeckt. Ein vorzeitiger Anstieg der miR-29-Konzentration in jungen Mäusen blockiert die kortikale Plastizität, wobei die Blockierung von miR-29 in erwachsenen Tieren eine Plastizität induziert, die typisch für jüngere sensible Phasen ist; ein Indiz dafür, dass miR-29 ein altersabhängiger Regulator der Entwicklungsplastizität ist. Die Beobachtung, dass miR29a ein Re-Modellierer ausgereifter neuronaler Netze ist, eröffnet neue, hoffnungsvolle therapeutische Perspektiven für miR-29a und andere miR-29-Familienmitglieder, um die Plastizität während des Alterns und die Regeneration von Hirnschädigungen zu fördern.

Referenzen:
Scuola Normale Superiore (SNS), Pisa; Leibniz-Institut für Alternsforschung, Jena
MiR‐29 coordinates age‐dependent plasticity brakes in the adult visual cortex. EMBO Rep (2020); https://doi.org/10.15252/embr.202050431

#gehirn #plastizität #neuronaleverknuepfung #altern #neuronen #kortex #entwicklungsplastizität #medizin #medimpressions

Fotocredit: Canva

Kategorien
Leben Neurologie Wissenschaft

Warum Handschreiben schlau macht

Ergebnisse mehrerer Studien haben bereits in der Vergangenheit gezeigt, dass sich sowohl Kinder als auch Erwachsene beim Schreiben von Hand besser erinnern und mehr lernen. Dies bestätigt jetzt auch eine aktuelle norwegische Studie. Bereits 2017 untersuchten die Wissenschaftler der NTNU (Norwegian University of Science and Technology) die Gehirnaktivität von 20 Studenten. In der erst kürzlich veröffentlichten Studie wurde erstmalig die Gehirnaktivität bei Kindern und jungen Erwachsenen untersucht. Beide Studien wurden unter Verwendung eines HD-EEGs durchgeführt, um die Gehirnwellenaktivität zu verfolgen und aufzuzeichnen.

Die Ergebnisse zeigten, dass das Gehirn sowohl bei Kindern als auch bei jungen Erwachsenen beim Schreiben mit der Hand viel aktiver ist als beim Tippen auf einer Tastatur. Die Verwendung von Stift und Papier ermöglicht dem Gehirn an Erinnerungen besser festhalten zu können. Handschreiben erzeugt eine höhere Aktivität in den sensomotorischen Teilen des Gehirns und regt viele unterschiedliche Sinne an. Diese Sinneserfahrungen stellen den Kontakt zwischen verschiedenen Teilen des Gehirns her und öffnen das Gehirn für das Lernen.

Die Forscher betonen daher, wie wichtig es ist, dass Kinder insbesondere in jungen Jahren zum Zeichnen und Schreiben herausgefordert werden. 

Referenzen:

Norwegian University of Science & Technology The Importance of Cursive Handwriting Over Typewriting for Learning in the Classroom: A High-Density EEG Study of 12-Year-Old Children and Young Adults. Eva Ose Askvik, F. R. (Ruud) van der Weel and Audrey L. H. van der Meer. Front. Psychol., 28 July 2020 | https://doi.org/10.3389/fpsyg.2020.01810

#handschreiben #schreiben #gehirn #lernen #erinnerung #neuroscience #kinder #eeg #gehirnstrom #schule #wissenschaft 

Fotocredit: Canva 

Kategorien
Neurologie Wissenschaft

Wie Hirnzellen umlernen

Menschen wie Tiere haben die Fähigkeit, sich immer wieder auf neue Situationen einzustellen. Die biologischen Prozesse, die diese Leistungen ermöglichen, sind noch sehr unvollständig verstanden. Das Institut für Hirnforschung der Universität Zürich illustrierte nun im Mausmodell, welche Nervenzellen im Gehirn dabei das Kommando haben.

Für die Versuche simulierten die Forscher in Mäusen einen Prozess des Umlernens und untersuchten auf Ebene einzelner Nervenzellen, was dabei im Gehirn passiert. Zunächst trainierten sie die Tiere darin, nach einer Berührung der Tasthaare mit grobkörnigem Sandpapier zu schlecken – was zu einer Belohnung mit Zuckerwasser führte. Bei Berührung mit feinkörnigem Sandpapier hingegen durften sie nicht schlecken, sonst löste dies ein unangenehmes Geräusch aus. Hatten die Mäuse dies verstanden, wurde der Spiess umgedreht: Nun gab es die Belohnung bei feinkörnigem Sandpapier, was diese schnell erlernten.

Dabei erwies sich, dass ein Teil der Grosshirnrinde, eine Gruppe von Hirnzellen des orbitofrontalen Kortex während des Umlernens besonders aktiv war. Diese Zellen haben lange Fortsätze, die bis in das Areal der sensorischen Nervenzellen reichen, die bei Mäusen Tastreize verarbeiten. In diesem Areal folgten die Zellen zunächst dem alten Aktivitätsmuster, ein Teil passte sich dann allerdings der neuen Situation an. Die Plastizität dieser Zellen und die Instruktion durch die höhere Instanz des orbitofrontalen Kortex scheint demnach für die Flexibilität des Verhaltens entscheidend zu sein. Wurden diese ausgeschaltet, funktionierte das Umlernen nicht.

Die Forscher nehmen an, dass sich diese fundamentalen Prozesse in ähnlicher Weise auch im menschlichen Gehirn abspielen und die Forschungsergebnisse zum besseren Verständnis von Hirnkrankheiten beitragen können, bei denen diese Flexibilität gestört ist, wie beispielsweise bei Formen von Autismus und Schizophrenie.

Referenzen:

Universität Zürich https://www.media.uzh.ch/de/medienmitteilungen/2020/Flexibles-Handeln.html

Value-guided remapping of sensory cortex by lateral orbitofrontal cortex, Nature 2020; https://doi.org/10.1038/s41586-020-2704-z

#gehirn #plastizitaet #nervenzellen #grosshirnrinde #hirnforschung #verhalten #lernen #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurologie Personalisierte Medizin Therapie Wissenschaft

Vielversprechendes Konzept bei Parkinson

Zellersatztherapie zeigt erste Erfolge.

Parkinson gilt seit langem als eine der vielversprechendsten Zielerkrankungen für eine zellbasierte Therapie. In einem neuartigen Ansatz wurden nun erstmals die leicht verfügbaren Hautzellen eines 69jährigen Patienten zu pluripotenten Stammzellen umprogrammiert und zu Nervenzellen herangezüchtet. Diese vorbehandelten körpereigenen Zellen wurden danach in zwei separaten Eingriffen in das Gehirn des Patienten implantiert.

Ein „Meilenstein“ der „personalisierten Medizin“ in der Behandlung von Parkinson, meinen die Studienautoren nach einer Beobachtungszeit von 24 Monaten. Denn das aus den körpereigenen Zellen hergestellte Transplantat wurde ohne Einsatz von Immunsuppressiva, Glukokortikoiden oder Antikonvulsiva gut vertragen und die neu angewachsenen Zellen stellen auch wieder Dopamin her. Eine Fähigkeit, die Nervenzellen im Laufe der Erkrankung verloren geht. Lebensqualität und Motorfunktion verbesserten sich ebenfalls.

Ob die Methode ausreicht, um die Erkrankung langfristig aufzuhalten, können die Forscher zum jetzigen Zeitpunkt allerdings noch nicht abschätzen.

Referenz:
Personalised iPSC-Derived Dopamine Progenitor Cells for Parkinson`s Disease; N Engl J Med 2020; 382:1926-1932 DOI: 10.1056/NEJMoa1915872
https://www.nejm.org/doi/full/10.1056/NEJMoa1915872

#parkinson #zelltransplant #autologetransplantation #zellersatztherapie #gehirnfunktion #stammzellen #stammzelltherapie #pluripotentestammzellen #medizin #medimpressions

Fotocredit: Canva

Kategorien
Leben Neurologie Wissenschaft

Luftverschmutzung beeinflusst Gehirnentwicklung

Forscher der University of California fanden einen Zusammenhang zwischen verkehrsbedingter Luftverschmutzung und einem erhöhten Risiko für neurologische Entwicklungsstörungen.

Ihre auf einem Nagetiermodell basierende Studie bestätigt damit epidemiologische Untersuchungen, die diesen Zusammenhang bereits belegen.

Um möglichst „echte“ Bedingungen zu generieren, errichteten sie ein Vivarium in der Nähe eines Strassentunnels und setzten Rattenbabys der Luftquelle aus dem Tunnel aus. Eine Vergleichsgruppe erhielt, ebenfalls in Echtzeit, eine gefilterte Version dieser Luft.

Die Forscher wiesen ein abnormales Wachstum der Gehirnzellen und erhöhte Entzündungsparameter im Gehirn der Jungratten, die der erhöhten Luftverschmutzung ausgesetzt waren, nach. „Auch wenn die Veränderungen nur subtil waren“, so die Wissenschaftler, „konnten wir diese nachweisen, obwohl sich der Verschmutzungsgrad der Luft innerhalb gesetzlicher Regeln befand“.

Vor dem Hintergrund zusätzlicher umweltbedingter und genetischer Faktoren, so die Forscher weiter, ist davon auszugehen, dass die Luftverschmutzung auch beim Menschen einen Effekt auf das sich entwickelnde Gehirn hat die mit neurologischen Entwicklungsstörungen verbunden sein könnten.

Referenz:
Effects of early life exposure to traffic-related air pollution on brain development in juvenile Sprague-Dawley rats, Translational Psychiatry, 10: 166 (2020)
https://www.nature.com/articles/s41398-020-0845-3

#gehirn #neurologie #luftverschmutzung #gehirnentwicklung #pädiatrie #universityofcalifornia #medizin #medimpressions

Fotocredit: Canva

Kategorien
Ernährung Leben Psychologie Wissenschaft

Vegetarier sind schlanker und weniger extrovertiert

Eine großangelegte Studie des Max-Planck-Instituts für Kognitions- und Neurowissenschaften (MPI CBS) in Zusammenarbeit mit dem Uniklinikum Leipzig hat an fast 9.000 Personen untersucht, wie die vegetarische Ernährung mit dem Körper und der Psyche zusammenhängt – unabhängig von Alter, Geschlecht und Bildungsstand.

Dabei zeigte sich: Je seltener tierische Nahrung auf dem Speiseplan einer Person stand, desto geringer war im Schnitt ihr Body-Mass-Index (BMI). Eine Ursache dafür könnte der geringere Konsum an stark verarbeiteten Lebensmitteln wie fett- und zuckerreichen Produkten sein. Zudem enthalten vegetarische Lebensmittel Ballaststoffe, die früher satt machen und sich positiv auf das Mikrobiom im Darm auswirken. Ebenso könnten Lebensstilfaktoren wie mehr Sport und ein höheres Gesundheitsbewusstsein eine entscheidende Rolle für ihr geringeres Körpergewicht spielen.

Die Forscher fanden zudem heraus, dass Menschen, die sich vegetarisch oder vegan ernähren introvertierter sind als solche, die sich vorrangig von Tierprodukten ernährten. „Woran das liegt, ist schwer zu sagen“, so Veronica Witte vom MPI CBS. „Es könnte daran liegen, dass introvertiertere Personen eher zu restriktiverem Essverhalten neigen oder sich aufgrund ihres Essverhaltens stärker sozial abgrenzen.“ Auch hier müssen weitere Studien dazu folgen, wie sich Menschen mit den Eigenschaften ihrer Ernährung identifizieren.

Referenzen:
Max-Planck-Institut 
https://www.cbs.mpg.de/vegetarier-sind-schlanker-und-weniger-extrovertiert-als-fleischesser
Nutrients 2020, 12(5), 1492; https://doi.org/10.3390/nu12051492

#Vegetatier #Veganer #Ernährung #Körpergewicht #BMI #Psyche #Introvertiertheit #Neurowissenschaften #Medizin #Medizinnews #Medimpressions

Fotocredit: Canva