Kategorien
Allgemeinmedizin Biotechnologie Diagnostik Genetik Molekulare Medizin Onkologie Personalisierte Medizin Wissenschaft

„Küsschen verteilen“ auf Zelloberflächen

Für die Entwicklung von neuartigen (Krebs)Medikamenten wäre es gut zu wissen, welche Moleküle auf Zelloberflächen neben welchen liegen und wie diese organisiert sind. Es geht darum zu verstehen, was sich auf der Zell-Ebene in der Organisation der Proteine in einer Krankheit verändert, etwa bei der Entartung einer gesunden zu einer Krebszelle. Auf diese Spurensuche machten sich nun Wissenschaftler, die eine Methode entwickelten, mit der sie messen, wie Proteine auf der Oberfläche von Zellen organisiert sind.

Mit dem „LUX-MS“ genannten Verfahren können die Forschenden mit einer Präzision im Nanometerbereich ermitteln, wie Proteine an der Zelloberfläche in eine Organisation eingebunden sind. Für einzelne, wechselwirkende Proteine konnten Wissenschaftler das bisher schon nachweisen, die neue Methode ist allerdings die erste, mit der die Organisation der Gesamtheit aller Zelloberflächenmoleküle gezielt erfasst werden kann.

Das Prinzip der Methode erklärt Bernd Wollscheid, ETH Zürich, so: „Wir verändern ein bestimmtes Oberflächenmolekül gezielt so, dass es Küsschen verteilt, und schauen dann, welche anderen Moleküle Spuren von Lippenstift abbekommen haben.“ Im nicht-übertragenen Sinn handelt es sich dabei um das Anhängen einer chemischen Verbindung, welche bei Bestrahlung geringe Mengen an reaktiven Sauerstoffmolekülen herstellt. Proteine, die sich in der Nähe befinden, werden dabei von den reaktiven Sauerstoffmolekülen oxidiert und lassen sich so erkennen.

Stellt sich dabei heraus, dass zwei Moleküle nur in Krebszellen, nicht jedoch in gesunden Zellen nebeneinander liegen, könnte man Medikamente entwickeln, welche dies erkennen und sich spezifisch dagegen richten. Im Rahmen der Studie wurde auch gezeigt, wo auf der Zelle ein Virus oder ein Wirkstoffmolekül andockt.

Referenz:
ETH Zürich
Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks, Nature Comm 2021; https://www.nature.com/articles/s41467-021-27280-x

#krebs #onkologie #proteinchemie #zellinteraktion #viren #medikament #zelloberflaeche #medizin #medimpressions

Kategorien
Allgemeinmedizin Biotechnologie Gastroenterologie Interne Medizin Onkologie Technologie Wissenschaft

Wie Darmbakterien Biomoleküle verschicken

Die Stoffwechselprodukte der Darmbakterien wirken in vielfältiger Weise: Sie trainieren etwa unsere Immunzellen, steuern Stoffwechselprozesse im Körper und tragen höchstwahrscheinlich zur Entstehung von neurologischen- oder Krebserkrankungen bei. Wie Bakterienstoffe jedoch in entfernte Organe wie der Leber oder das Gehirn gelangen, war bislang nicht geklärt. Vermutet wird, dass als Transportmittel kleine Kapseln (Membranbläschen oder Vesikel) verwendet werden, die mit bakteriellen Enzymen, Proteinen oder auch RNA-Erbmolekülen gefüllt sind.

Ein internationales Wissenschaftsteam hat jetzt an Mäusen untersucht, wie Bakterien ihre Stoffwechselprodukte in solchen Vesikeln verteilen. Dazu besiedelten die ForscherInnen den Darm von Mäusen mit E.-coli-Bakterien, die eine bestimmte Genschere produzierten (Cre) und diese über Vesikel in die Umgebung abgaben. Die Mäuse besaßen in Körperzellen ein Gen für ein rotes Leuchtprotein, das durch die Genschere aktiviert werden konnte (Cre/LoxP-System). So konnte das Ziel der Vesikel, die von einzelnen Zellen des Darms, der Leber, der Milz, des Herzens, der Nieren sowie von Immunzellen aufgenommen wurden, nachverfolgt werden. Sogar einzelne Nervenzellen des Gehirns leuchteten rot auf.
Die Fluoreszenzbilder wiesen auch darauf hin, dass die Vesikel wahrscheinlich über den Blutstrom im Körper verteilt werden.

Bioaktive Bakterienstoffe wurden auch von den Stammzellen der Darmschleimhaut aufgenommen, was bedeutet, dass Darmbakterien womöglich sogar dauerhaft die Eigenschaften der Darmschleimhaut verändern können. Der neue Ansatz könnte jetzt helfen, den Einfluss von Darmbakterien auf Krankheiten besser zu verstehen und die Entwicklung von neuartigen Verabreichungsformen von Medikamenten oder Impfstoffen zu fördern.

Referenz:
Universität Frankfurt, Universität Erlangen-Nürnberg, University of California
Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo, J Extracell Vesicles 2021; https://onlinelibrary.wiley.com/doi/10.1002/jev2.12159?af=R

#mikrobiom #darm #genetik #stoffwechsel #darmbakterien #stammzellen #gesundheit #medizin #medimpressions

Kategorien
Epigenetik Technologie Wissenschaft

Neue Technologie schaltet Gene beliebig „ein“

Viele Erkrankungen, die mit bestimmten Genen verbunden sind, beruhen darauf, dass diese entweder nicht „eingeschalten“ oder „ausgeschalten“ sind. Eine der Möglichkeiten, wie eine Zelle bestimmte Gene ausschaltet, besteht darin, dass ein kleines Molekül (eine Methylgruppe) reversibel an die DNA angefügt wird. Meist neigen DNA-Stränge mit häufiger „Methylierung“ dazu, „ausgeschalten“ zu sein. Im Gegensatz dazu sind Gene die weniger Methylgruppen aufweisen, oft „eingeschalten“.

Bisher war es nicht möglich, den Grad der DNA-Methylierung an bestimmten Genen zu manipulieren, um die Funktion des Gens näher untersuchen zu können. Kürzlich ist es Wissenschaftlern jedoch mit Hilfe der CRISPR/Cas9-Technologie gelungen, spezifische DNA-Methylierungen an bestimmten Genen in Maus und menschlichen Zellen zu entfernen. Mittels der neuen Technologie lässt sich die DNA-„Demethylierungs“-Aktivität auf jede beliebige Stelle in der DNA – also auf jedes zu untersuchende Gen – richten, ohne Schäden an der Grundstruktur oder Aktivitäten an unerwünschten Genabschnitten zu verursachen.

Um die Forschung voranzutreiben, wurde nun die „Bedienungs-Anleitung“ zu dieser Technologie freigegeben. Bleibt zu hoffen, dass dieser Ansatz eines Tages vielleicht dazu beiträgt, etwa Gene in Zellen, die die Insulinausschüttung bei Typ-1-Diabetes steuern und auf „ausgeschalten“ programmiert sind, wieder einschalten zu können. Naheliegende Anwendungsgebiete finden sich auch in der Krebsforschung oder der rheumatoiden Arthritis, meinen die Wissenschaftler.

Referenz:
McGill University, Montreal
Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9, Nature Comm 2021; https://www.nature.com/articles/s41467-021-25991-9

#dna #gene #methylierung #genaktivitaet #crisprcas #geneditierung #epigenetik #medizin #medimpressions

Kategorien
Epigenetik Genetik Immunologie Infektiologie Wissenschaft

Epigenetik: Immunisierung geht auf nächste Generation über

Es wird nicht nur vererbt, was in der DNA-Sequenz festgeschrieben ist. Studien zeigen, dass auch Umwelteinflüsse an die nächste Generation weitergegeben werden. Eine Übertragung der Infektionsresistenz auf die nächste Generation wurde bereits bei Pflanzen und wirbellosen Tieren nachgewiesen. Ein internationales Forschungsteam hat nun erstmals gezeigt, dass auch bei Säugetieren Effekte des angeborenen Immunsystems an die nächsten Generationen weitergegeben werden.

Die Forschenden infizierten männliche Mäuse mit Soorpilzen (Candida albicans) und paarten sie mit gesunden Weibchen. Die daraus hervorgehenden Kinder waren deutlich besser vor einer nachfolgenden E. coli-Infektion geschützt als die Nachkommen von nichtinfizierten männlichen Mäusen. Auch die nächste Generation profitierte noch von der Grundimmunisierung.

Das Forschungsteam wies nach, dass die Weitergabe der Immunisierung über eine Hochregulierung eines Gens (MHC-Klasse-II-Komplex) erfolgte, der Teile des Immunsystems aktiviert. Darüber hinaus zeigte sich, dass bei Nachkommen Candida infizierter Väter auch die Aktivität von Genen hochreguliert war, die an Entzündungen beteiligt sind. Bei den Nachkommen der zuvor immunisierten Mäuse erwies sich, dass in Monozyten-Vorläufern Entzündungs-assoziierte Gene besser ausgelesen werden konnten als bei Söhnen nicht-infizierter Väter. “Dies zeigt, dass die Monozyten-Vorläufer des Immunsystems epigenetisch umprogrammiert sind, wenn die Väter zuvor eine Infektion durchgemacht haben”, so Mitautor Andreas Schlitzer, Uni Bonn.
Die ForscherInnen gehen auch davon aus, dass die an Mäusen gewonnenen Erkenntnisse auf den Menschen übertragbar sind.

Referenz:
Radboud University Nijmegen, Universität Bonn, Universität des Saarlandes, Universität Lausanne, Kapodistrian University of Athens
Transmission of trained immunity and heterologous resistance to infections across generations, Nature Immunology 2021; https://www.nature.com/articles/s41590-021-01052-7

#epigenetik #genetik #vererbung #immunisierung #entzuendung #umwelt #infektion #medizin #medimpressions

Kategorien
Genetik Onkologie Technologie Tumorbiologie Wissenschaft

Ribosomem-Hemmer als neue Tumor-Medikamente

Stellt man sich eine Zelle wie eine Fabrik vor, dann sind Ribosomen jene „Maschinen“, die die Proteine herstellen. Die Bildung von neuen Ribosomen ist für sich schnell teilende Zellen besonders wichtig. „Normale“ Zellen können mit den vorhandenen Ribosomen länger haushalten. Schnellteilende Zellen – wie es etwa Krebszellen sind – brauchen aber permanent Nachschub: „Wenn wir hier die Neubildung von Ribosomen hemmen, könnte das ein vielversprechender Ansatzpunkt für die Entwicklung effektiver Medikamente zur Tumorbehandlung sein“, erklärt Helmut Bergler von der Universität Graz.

Wie der Hemmstoff Diazaborin die Bildung neuer Ribosomen komplett zum Erliegen bringen kann, hat das interdisziplinäre Forschungsteam in Kooperation mit dem Forschungsinstitut für Molekulare Pathologie (IMP) und dem Institute of Science and Technology (IST) jetzt gezeigt. Die WissenschafterInnen haben sich dabei das Protein „Drg1“, das zu einer weit verbreiteten Enzym-Familie gehört, genauer angesehen. Es dient dazu, einen wichtigen Faktor von einer Ribosomen-Vorstufe abzulösen und zu recyclen, so dass dessen Reifung voranschreiten kann. „Die Hemmung von Drg1 durch Diazaborin erfolgt dabei durch einen neuartigen Mechanismus und blockiert effizient die Entstehung neuer Ribosomen“, unterstreicht Erstautor Michael Prattes das Ergebnis ihrer Untersuchungen. 

In der Studie konnte das Forschungsteam erstmals auch die Struktur von Drg1 im Zusammenhang mit Diazaborin mittels cryo-Elektronenmikroskopie bestimmen. Dabei zeigte sich, dass Diazaborin – im Gegensatz zu anderen Hemmstoffen – eine direkte Bindung zum Nukleotid Co-Faktor eingeht.
Das Wissen um die Wirkung des Hemmstoffs könnte nun einen wichtigen Beitrag für die weitere Entwicklung von neuartigen Wirkstoffen in der Behandlung von Tumoren leisten.

Referenz:
Universität Graz, IMP, IST
Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine, Nature Comm 2021,  https://www.nature.com/articles/s41467-021-23854-x

#tumor #krebs #ribosomen #zellteilung #proteine #hemmwirkung #enzym #medizin #medimpressions

Fotocredit: Canva

Kategorien
Leben Neurologie Neurowissenschaften Technologie Wissenschaft

Videospiele trainieren den Zahlensinn

Aus Studien ist bereits bekannt, dass Videospielen kognitive Fähigkeiten wie etwa die Zeitwahrnehmung oder das Arbeitsgedächtnis verbessert. Eine weitere Studie belegt jetzt, dass Videospieler auch besser darin sind, Mengen richtig abzuschätzen.

Videospiele sind nicht nur Zeitvertreib, sie verbessern auch die Hirnleistung. Je mehr wir spielen, desto besser lässt sich auf einen Blick eine Anzahl von Gegenständen abschätzen. „Das beruht wahrscheinlich auf verbesserten Aufmerksamkeitsprozessen im Gehirn, berichten die Neurowissenschaftler Joana Stäb und Uwe Ilg vom Hertie-Institut für klinische Hirnforschung und der Universität Tübingen.

Um dies herauszufinden, rekrutierten sie passionierte Computerspieler, die mehr als vier Stunden pro Woche mit ihrem Hobby verbrachten. Als Kontrollgruppe dienten Personen, die deutlich weniger Zeit mit Videospielen verbrachten. Während des Experiments sahen beide Probandengruppen zwei Kreise mit Punkten auf einem Bildschirm. Sie mussten jeweils spontan angeben, in welchem Kreis sich mehr Punkte befanden. So konnten die Forschenden ihre Wahrnehmungsschwelle bestimmen.

Das Ergebnis: „Die Fähigkeit, Mengen auf einen Blick zu schätzen, lässt sich tatsächlich trainieren“, berichtet Studienleiter Ilg. „Vereinfacht ausgedrückt: Computerspieler können intuitiv und ohne nachzuzählen besser unterscheiden, ob mehr Äpfel oder mehr Orangen in einem Einkaufswagen liegen.“ Bei den Versuchsdurchgängen, in denen sich die Menge von Punkten in beiden Kreisen nur minimal unterschied, waren sie sogar eindeutig überlegen. Je mehr sie pro Woche spielten, desto feiner war ihre numerische Auflösung.
Die Hirnforscher rufen allerdings nur zum mäßigen Spielen auf: „Jede Medaille hat zwei Seiten – exzessives Computerspielen kann in Abhängigkeit münden, dies ist offiziell als Krankheit anerkannt.“

Referenz:
Universität Tübingen
Video-game play and non-symbolic numerical comparison, Addiction Biology 2021; https://onlinelibrary.wiley.com/doi/10.1111/adb.13065

#videospiele #skills #kognitivefaehigkeit #computerspiele #hirnleistung #gehirn #aufmerksamkeit #medizin #medimpressions

Fotocredit: Canva

Kategorien
Ernährung Leben Technologie Umwelt Wissenschaft

Zukunftsnahrung: Quallenchips und Seegurkensuppe

Die Weltbevölkerung nimmt rasant zu, fruchtbares Land, Süßwasser und Dünger werden knapp. Am Leibniz-Zentrum für Marine Tropenforschung geht man daher der Frage nach, inwieweit das Meer Nahrungsressourcen birgt, die bisher noch kaum genutzt wurden.

Auf unseren Tellern könnte sich bald ein Tier finden, das als vermehrungsfreudige Plage, ein eher negatives Image hat – die Qualle. Sie besteht zwar zu rund 97% aus Wasser, ihre Trockenmasse hat aber ein interessantes Nährwertprofil mit einem hohen Anteil an essentiellen Aminosäuren, vielen Mineralstoffen und mehrfach ungesättigten Fettsäuren. Dank ihres Proteingehaltes könnten Quallen sogar Lachs oder Thunfisch ersetzen, die auch in Aquakultur kaum nachhaltig gezüchtet werden können. Aufgrund ihrer großen Artenvielfalt ist auch davon auszugehen, dass ihr Potenzial für unsere Ernährung bei weitem noch nicht ausgeschöpft ist. Für Europäer könnten sie als kalorienarmes Superfood in Form von Chips oder Proteinpulver attraktiv werden.

Im Fokus der Wissenschaftler befinden sich auch Seegurken, von denen es rund 1700 Arten gibt, darunter einige, die über drei Meter lang werden und in allen Meeren vorkommen. Bekannt als „Ginseng der Meere“ enthalten sie unter anderen wertvollen Inhaltsstoffen auch Chondroitinsulfat, das gegen Arthrose wirken soll.
Mittels integrierter Aquakultur versucht man jetzt Wohngemeinschaften unter Wasser zu etablieren, die einen natürlichen Kreislauf bilden. So sollen etwa die Futterreste und Ausscheidungen von Fischen oder Garnelen, von anderen Zuchtorganismen wie Algen, Muscheln oder Seegurken verwertet werden. Algen, wie etwa die Meerestraube, weisen nämlich ebenfalls ein sehr breites Spektrum an nützlichen Inhaltsstoffen auf. Zudem schmeckt der „grüne Kaviar“ leicht salzig und zerplatzt im Mund geradeso wie sein Namensgeber.

Referenz:
Leibniz-Zentrum für Marine Tropenforschung (ZMT)
Pressemeldung: „Food for the future”, 25.5.2021, https://www.leibniz-zmt.de/de/forschung/wissenschaftliche-projekte/food-for-the-future.html

#ernährung #nährwert #zukunft #meer #aquakultur #nahrung #ressourcen #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Diagnostik Technologie Wissenschaft

Biochips schmuggeln effizient Wirkstoffe in Zellen ein

Moderne Impfstoffe wie die gegen Sars-CoV-2 nutzen winzige Fettkügelchen, um genetische Informationen in Zellen zu bringen und so eine Immunabwehr gegen das gefährliche Virus aufzubauen. Ein Team von WissenschaftlerInnen hat nun eine ganz neue Methode entwickelt, mit deren Hilfe sich sehr effizient nicht nur Gene, sondern auch Wirkstoffe und andere Substanzen in Zellen transportieren lassen. Das neue Verfahren, das jetzt auch als Patent eingereicht wurde, nennt sich „Progressive Mechanoporation“.

Die ForscherInnen entwickelten einen speziellen Biochip aus einem Kunststoff, auf dem hintereinander immer enger werdende Kanäle, die mehr als zehnmal kleiner sind als ein menschliches Haar, angeordnet sind. Zellen, die durch diese Kanäle gepresst werden, strecken sich dabei immer stärker, bis Löcher in der Plasmamembran entstehen. Durch diese Löcher können dann Moleküle in das Zellinnere gelangen. Haben die Zellen die Kanäle passiert, schließen sich die Löcher von alleine wieder. Die Forschenden haben gezeigt, dass das sogar mit sehr großen Proteinen, wie beispielsweise Antikörper, klappt.

Ein großer Vorteil der Methode: Pro Sekunde können so bis zu 10.000 Zellen durch den Chip geschickt werden. Gleichzeitig ist das Verfahren sehr schonend, nur wenige Zellen werden im Vergleich zu anderen Techniken geschädigt.
Mit Hilfe der neuen Methode könnten Pharmahersteller künftig etwa sehr effizient Wirkstoffe testen, um neue Medikamente zu entwickeln. Krankenhäuser könnten in Zukunft mit der „Progressiven Mechanoporation“ routinemäßig Zellen von Patienten untersuchen und sogar behandeln.

Referenz:
TU Dresden; Max-Planck-Zentrum für Physik und Medizin; ICR, London
Efficient and gentle delivery of molecules into cells with different elasticity via progressive mechanoporation, Lab Chip, 2021, Advance Article;
https://doi.org/10.1039/d0lc01224f

#wirkstoffe #transport #intrazellulär #biochip #membran #medikamentenentwicklung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Genetik Infektiologie Leben Technologie Wissenschaft

The Dance of Spike – Spikeproteine im Discofieber

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

Ein Video der Johannes Kepler Universität Linz (JKU) zeigt, wie sich das Lektin CLEC4G an die Zuckermoleküle des Spikeproteins von SARS-CoV-2 heftet. Das Spike-Protein erweist sich dabei als erstaunlich geschmeidig und tanzfreudig.

Diese Beweglichkeit überraschte auch die Forscher, da das quasi dreiseitige S-Protein auf den Bildern immer „relativ geschlossen“ aussieht, erklärt Peter Hinterdorfer vom Institut für Biophysik der Universität Linz: „Wir haben aber gesehen, dass es an den Oberflächen eigentlich aufmacht und die drei Arme dynamisch sind.“

Hinter den Aufnahmen steckt eine Forschungsarbeit zu einer Idee um den Genetiker Josef Penninger, bei der man dem SARS-CoV-2-Virus mittels Lektinen den Schlüssel für menschliche Zellen „verkleben“ möchte. Erste Ergebnisse sind vielversprechend. So konnten bereits zwei von 140 untersuchten Lektinen isoliert werden. Diese könnten möglicherweise andere Substanzen, wie etwa das sich in fortgeschrittener klinischer Erprobung befindliche Medikament APN01, ein biotechnologisch hergestelltes menschliches Angiotensin Converting Enzym 2 (rhACE2), das ebenfalls an das Spike-Protein bindet, unterstützen.

Penninger: „Mit beiden Lektinen haben wir erstmals die Möglichkeit, das Virus über dessen Zuckerhülle zu binden und zu neutralisieren. Die Stellen, an denen das SARS-CoV-2 S-Protein mit den Zuckermolekülen modifiziert wird, sind hoch-konserviert und finden sich in allen derzeit zirkulierenden Mutanten wieder. Womöglich ist das die Achillesferse des Virus.“

Referenz:
Video: Johannes Kepler Universität Linz;
APA Pressemeldung 27.April 2021;
Originalliteratur: Identification of lectin receptors for conserved SARS-CoV-2 glycosylation sites, bioRxiv April 2021; https://www.biorxiv.org/content/10.1101/2021.04.01.438087v1

#spikeprotein #lektin #sarscov2 #pandemie #covid19 #corona #viren #medizin #medimpressions

Fotocredit: Johannes Kepler Universität Linz

Kategorien
Diagnostik Digital Health Interne Medizin Technologie Wissenschaft

Ultraleichtes Sensorpflaster ersetzt Kabel und Geräte

Für viele Menschen ist es ein notwendiges Übel – das dreimal tägliche Messen von Blutdruck und Puls. Stress verursachen auch die eingesetzten Messgeräte, die hinsichtlich Größe und Gewicht, als auch Messvorgang meist als unhandlich empfunden werden, was folglich sogar die Blutdruckwerte verfälschen kann.

Diese Situation inspirierte Forscher des Joanneum Research, gemeinsam mit Kollegen der Osaka Universität, ein elektronisches Sensorpflaster für Gesundheitsparameter zu entwickeln, das so dünn ist, dass man es kaum spürt. Insgesamt ist das Pflaster nicht mehr als 0,0025 mm dick und enthält ein ferroelektrisches Polymer zwischen zwei Elektrodenflächen, das auf einer hauchdünnen Trägerfolie aufgebracht wurde. Es schmiegt sich komplett an die Haut an und ist damit der weltweit erste, ultraflexible piezoelektrische Sensor. Neben der Pulsrate kann das Sensorpflaster Aussagen über die Elastizität der menschlichen Blutgefäße machen und über die Pulswellengeschwindigkeit den Blutdruck messen. Die Messdaten können dank eines Elektronikmoduls auch an ein Smartphone drahtlos übertragen werden.

Besonders faszinierend ist, dass das Sensorpflaster kabellos und komplett energieautark eingesetzt werden kann, da die Gewinnung der elektrischen Energie – mittels entsprechender Schaltung – über biomechanische Bewegungen, etwa während des Stufensteigens, gewonnen werden kann. Dies würde für eine dreimal tägliche Blutdruckmessung ausreichen, so die Forscher, vorausgesetzt, es findet sich ein leichtes  verbrauchsarmes Elektronikmodul für kabellose Datenübertragung, die derzeit noch rar gesät sind.

Elektronische Sensorpflaster könnten künftig als Teil des Screenings bei weiteren Herz-Kreislauferkrankungen, Stressfaktoren und Schlafapnoe eingesetzt werden.

Referenz:
Joanneum Research Weiz/Graz; Osaka University
Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes, Nature Comm 2021; https://www.nature.com/articles/s41467-021-22663-6

#messpflaster #sensoren #blutdruckmessung #puls #datenaufzeichnung #smartphone #medizin #medimpressions

Fotocredit: Canva