Kategorien
Allgemeinmedizin Angiologie Hämatologie Hepatologie Immunologie Infektiologie Intensivmedizin Interne Medizin Kardiologie Nephrologie Virologie Wissenschaft

Covid-19: Gefahr durch dickes Blut

Eine Infektion mit Sars-CoV2 kann nicht nur aufgrund eines akuten Lungenversagens tödlich verlaufen, sie geht auch mit einer gesteigerten Gerinnselbildung und damit einer erhöhten Rate an Lungenembolien, Schlaganfällen oder Herzinfarkten einher. Die intensivmedizinische Behandlung wird dann zusätzlich wegen der Thrombose nötig. Venöse Thromoboembolien wie tiefe Beinvenenthrombosen und Lungenembolien treten bei bis zu jeder dritten Sars-CoV2-infizierten Person in der Intensivstation auf, selbst bei einer prophylaktischen Antikoagulation.

Untersuchungen zeigten, dass erhöhte Spiegel des Gerinnungsproteins Fibrinogen und weiterer Thrombose-Biomarker im Blut der Infizierten nachweisbar sind, was auf eine gesteigerte Aktivierung der Blutgerinnung hinweist. Jetzt wurde eine Studie veröffentlicht, die belegt, dass „Coronathromben“ viel effektiver sind und ein dichteres und stabileres Gerinnsel-Netzwerk aufwiesen als solche von Influenza-PatientInnen oder die von Gesunden. Die Thromben erweisen sich zusätzlich als sehr resistent gegenüber einer Auflösung (Fibrinolyse), da die Betroffenen auch erhöhte Spiegel von Fibrinolyse-Inhibitoren in ihrem Blut haben.

Die Untersuchungen des von der Uni Gießen koordinierten Forscherteams, lassen den Schluss zu, dass die bereits bekannte „Hyperkoagulation“ im Blut von Corona-Infizierten sich vor allem auf die Aktivierung des Gerinnungsfaktors XII und deren Folgereaktionen zurückführen lässt. „Da die Möglichkeit besteht, Faktor XIIa durch bereits erforschte spezifische Inhibitoren zu hemmen, könnte so eine wirksame antithrombotische Therapie bei Corona-Patienten erfolgen, ohne dass deren physiologische Hämostase und Wundheilung beeinträchtigt ist“, hofft Forschungsleiter Klaus Preissner.

Referenz:
Justus-Liebig-Universität Gießen
Altered fibrin clot structure and dysregulated fibrinolysis contribute to thrombosis risk in severe COVID-19, Blood Adv. 2021; https://ashpublications.org/bloodadvances/article/doi/10.1182/bloodadvances.2021004816/482891/Altered-fibrin-clot-structure-and-dysregulated

#covid #corona #blut #thrombose #mortalität #gerinnung #intensivmedizin #medizin #medimpressions

Kategorien
Angiologie Biotechnologie Hämatologie Intensivmedizin Onkologie Wissenschaft

Mikrovehikel die gegen den Strom schwimmen

Winzige Vehikel, so klein, dass sie durch unsere Blutgefäße navigieren können, sollen es Ärzten in Zukunft erlauben, im Körperinnern Biopsien zu nehmen, Stents einzusetzen oder Medikamente präzise an schwer zu erreichende Stellen zu transportieren. Wissenschaftler weltweit erforschen und entwickeln derzeit solche Mikrovehikel. Allerdings war es bisher eine große Herausforderung, Mikrovehikel gegen einen Flüssigkeitsstrom zu bewegen. Forschende der ETH Zürich haben nun Mikrovehikel entwickelt, welche von einem externen Feld angetrieben werden und gegen den Strom schwimmen können.

Sie benutzten magnetische Eisenoxid-Polymer-Kügelchen mit einem Durchmesser von 3 Mikrometern, die sich in einem Magnetfeld zu einem Schwarm mit einem Durchmesser von 15 bis 40 Mikrometern zusammenballen. Um den Kügelchenschwarm in einem Röhrchen, das der Größe von Blutgefäßen entspricht, stromaufwärts zu bewegen, nutzten sie denselben Trick, den auch Bootsfahrer in einem Fluss nutzen: Letztere rudern in Ufernähe stromaufwärts. Dort ist die Fließgeschwindigkeit wegen des Reibungswiderstands des Ufers geringer als in der Flussmitte.

Mithilfe von Ultraschall einer bestimmten Frequenz brachten die Wissenschaftler den Mikrokügelchen-Schwarm zunächst in die Nähe der Röhrchenwand. Anschließend konnten sie den Schwarm mit einem rotierenden Magnetfeld entgegen der Flussrichtung bewegen.

„Weil sowohl Ultraschallwellen als auch Magnetfelder Körpergewebe durchdringen, ist unsere Methode gut geeignet, um Mikrovehikel auch im Körperinnern zu lenken,“ fassen die Studienleiter Daniel Ahmed und Bradley Nelson ihre Ergebnisse zusammen. Neben dem Abbau von verstopften Blutgefäßen könnten die Mikrovehikel dazu verwendet werden, um Krebsmedikamente über die Blutgefäße zu Tumoren zu bringen oder Wirkstoffe ins Hirngewebe transportieren zu können.

Referenz:
ETH Zürich
Bioinspired acousto-magnetic microswarm robots with upstream motility, Nature Machine Intelligence, https://www.nature.com/articles/s42256-020-00275-x

#mikrovehikel #blutbahn #medikamententransport #magnetfeld #therapie #onkologie #angiologie #medizin #medimpressions

Fotocredit: Canva