Kategorien
Genetik Molekulare Medizin Onkologie Wissenschaft

Wie man Tumore „entwaffnet“

Damit sich Immunzellen nicht gegen gesunde Zellen wenden, bilden diese ein Schutzschild: das Protein CD47.  Dieses „Friss mich nicht“-Signal machen sich auch Tumorzellen zu Nutze, indem sie vermehrt CD47 an ihrer Zelloberfläche präsentieren. Bisherige Therapien mit Antikörpern blockieren zwar das Protein CD47 und aktivieren damit zugleich Immunzellen. Dabei können jedoch erhebliche Nebenwirkungen auftreten, da dadurch auch gesundes Gewebe und rote Blutkörperchen geschädigt werden. 

Um das Schutzschild zu durchbrechen, brachten Forscher vom Department für Pharmazeutische Wissenschaften der Universität Wien einen DNA-Vektor direkt in Tumorzellen ein, so dass diese selbst ein CD47-blockierendes und damit immunaktivierendes Protein produzieren.

Das Ergebnis: CD47 konnte sowohl auf den Protein-produzierenden Zellen als auch auf Tumorzellen in der Umgebung erfolgreich blockiert werden. 
In einem in vivo Modell von humanem, hoch malignem Brustkrebs zeigte sich, dass durch diese Therapie das Tumorwachstum gestoppt wurde und in einem Drittel der Fälle die Tumore sogar verschwanden. „Wir konnten beobachten, dass durch diese Behandlung Fresszellen in den Tumor einwanderten. An der Therapiewirkung waren auch andere Immunzellen beteiligt. Besonders erfreulich: Diese Wirkung blieb auf Tumorzellen beschränkt und es traten keinerlei Nebenwirkungen in Organen auf“, erklärt Studienleiter Manfred Ogris: „Nun wollen wir diesen Therapieansatz weiter optimieren, um ihn in Zukunft in präklinischen Studien noch weiter für eine mögliche Tumortherapie zu entwickeln“.

Referenz:
Universität Wien
CD47-targeted cancer immunogene therapy: secreted SIRPα-Fc fusion protein eradicates tumors by macrophage and NK cell activation, Mol Ther Oncolytics 2021; https://www.sciencedirect.com/science/article/pii/S2372770521001339?via%3Dihub

#krebs #cd47 #onkologie #tumorwachstum #tumortherapie #gentransfer #immunsystem #medizin #medimpressions

Kategorien
Biotechnologie Immunologie Onkologie Personalisierte Medizin Wissenschaft

Mit zwei Virusarten gegen Tumore

Eine internationale Forschungsgruppe unter Leitung der Universität Basel hat eine vielversprechende Strategie für therapeutische Krebsimpfungen entwickelt. Der Ansatz das Immunsystem als Verbündeten einzusetzen, ist nicht neu. Im Prinzip werden Bestandteile des Tumors als Erkennungsmerkmal für das Immunsystem eingesetzt. Patienten erhalten diese in Form einer Impfung. Als Vehikel für Tumormoleküle dienen unschädlich gemachte Viren, die auch für eine starke Tumorantwort sorgen. Allerdings scheiterten bisher viele Versuche für eine solche Krebstherapie an einer zu wenig effizienten Immunantwort.

Eine Hürde besteht darin, dass der Tumor aus körpereigenen Zellen besteht und das Immunsystem Sicherheitsvorkehrungen trifft, um diese nicht anzugreifen. Zudem richten sich die Immunzellen oft mehr gegen das körperfremde Virusvehikel als gegen seine „Tumorfracht“.

Die Forschungsgruppe um Daniel Pinschewer, Universität Basel, hat bereits in früheren Studien entdeckt, dass sich Viren aus der Familie der Arenaviren gut eignen, um eine starke Immunantwort auszulösen. Nun berichten sie, dass die Kombination aus zwei verschiedenen Arenaviren im Tierversuch vielversprechende Resultate liefern. Pinschewer: „Indem wir (für die Impfung) nacheinander zwei verschiedene Viren verwenden, fokussieren wir die ausgelöste Immunantwort auf das, worauf es ankommt, nämlich das Tumormolekül.“
Bei etwa 20 bis 40 Prozent der Tiere – je nach Art ihrer Krebserkrankung – verschwand der Tumor, während sich bei weiteren das Tumorwachstum zumindest temporär verlangsamte.
Über die Wirksamkeit dieser neuen Therapieform beim Menschen gibt es noch keine Erkenntnisse. Laufende Studien mit einer Krebstherapie, die auf nur einem einzelnen Arenavirus basiert, weisen aber bereits erste ermutigende Ergebnisse aus.

Referenz:
Universität Basel
Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack; Cell Reports Medicine 2021, https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(21)00020-3

#krebs #tumor #krebsimpfung #vakzination #onkologie #krebsforschung #immunsystem #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Onkologie Wissenschaft

Magnetische Bakterien zur Tumorbekämpfung

Wissenschaftler nutzen magnetische Bakterien, um auf der Mikroebene Flüssigkeiten zu beeinflussen. Jetzt denken sie an einen Einsatz in der menschlichen Blutbahn, um damit Krebsmedikamente präzise zu einem Tumor zu bringen.

Forschende haben solche magnetotaktische Bakterien vor 45 Jahren im Meer entdeckt. Die Mikroorganismen nehmen das im Wasser gelöste Eisen auf. In ihrem Innern bilden sich Eisenoxid-Kristalle, die sich in einer Reihe anordnen. Wie eine Kompassnadel richten sich diese Bakterien am Erdmagnetfeld aus, um so im Gewässer navigieren zu können.
Simone Schürle, ETH Zürich, bewies mit ihrem Team dass bereits verhältnismäßig schwache rotierende Magnetfelder reichen, um die Bakterien zu steuern. Ein Bakterienschwarm kann die sie umgebende Flüssigkeit bewegen. Damit erzeugen sie einen ähnlichen Effekt wie eine Mikropumpe und können so in der Flüssigkeit vorhandene Wirkstoffe in verschiedene Richtungen bewegen, wie zum Beispiel aus der Blutbahn heraus ins Tumorgewebe. Durch die Verwendung von sich überlagernden Magnetfeldern, die sich örtlich gegenseitig verstärken, beziehungsweise auslöschen, kann man diese Pumpaktivität auch auf eine kleine Region punktgenau reduzieren. Zudem kann das Prinzip außerhalb des Körpers genutzt werden, um in kleinsten Gefäßen verschiedene Flüssigkeiten lokal miteinander zu mischen, ohne mechanische Mikropumpen fabrizieren und steuern zu müssen.

Denkbar ist auch, für eine künftige medizinische Anwendung synthetische Bakterien mit optimalen funktionellen Eigenschaften zu konstruieren oder bereits tote Bakterien umzubauen und einzusetzen. Angedacht wird auch der Einsatz von bestimmten Bakterien, die ohne Sauerstoff auskommen und sich in Krebspatienten bevorzugt im sauerstoffarmen Gewebe von Tumoren anreichern.

Referenzen: ETH Zürich
Self-Replicating Ferrofluids for Fluidic Transport, Advanced Functional Materials 2020, 30: 2003912,
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202003912

#bakterien #onkologie #tumorbehandlung #wirkstofftransport #magnet #krebs #medizin #medimpressions

Fotocredit: Canva