Kategorien
Angiologie Genetik Interne Medizin Kardiologie Onkologie Wissenschaft

Wie man Blutgefäße in Schach hält

Blutgefäße sind in ihrem Inneren von einer hauchdünnen Zellschicht ausgekleidet: das Endothel.  Es stellt eine entscheidende Barriere zwischen Blut und umliegenden Gewebe dar und fördert den Austausch von Sauerstoff und Nährstoffen, verhindert aber gleichzeitig den unkontrollierten Austritt von Blutbestandteilen. Nur bei erhöhtem Stoffwechselbedarf des Gewebes, etwa bei Wachstum, Wundheilung oder auch wenn ein Tumor entsteht, geben Endothelzellen diesen stabilen Zellverband auf, um sich zu teilen und neue Blutgefäße zu bilden. Die Signale, die dieses Aktivwerden auslösen, sind gut untersucht.

Wenig wusste man bisher darüber, wie Endothelzellen ihren stabilen Ruhezustand aufrechterhalten. Genau dies haben Wissenschaftler nun herausgefunden. Sie wussten auch schon, wo sie ansetzen mussten, am Faktor FOXO1, einem Stoffwechsel- Metabolit, der das Ablesen von Erbinformation in Zellen steuert. Wie genau er dabei vorgeht, wurde nun enträtselt. Nach Isolierung sämtlicher Stoffwechselprodukte aus den Zellen, fiel auf, dass vor allem die Konzentration von 2-Hydoxyglutarat durch FOXO1 anstieg, eine Substanz, die bereits in der Krebsmedizin große Bekanntheit erlangt hat.  Die ForscherInnen fanden allerdings heraus, dass es sich um eine besondere Form des 2-Hydroxyglutarat handelt: das S-2-Hydroxyglutarat. Nur diese Substanz war in der Lage Endothelzellen in der Quieszenz, also in Ruhestellung zu halten.

Vor dem Hintergrund, dass ein „Zuviel“ oder ein „Zuwenig“ von neuen Blutgefäßen bei vielen Krankheiten eine Rolle spielt, ist es wichtig, die grundlegenden Mechanismen dahinter besser zu verstehen, sie die Studienautoren. Langfristiges Ziel ist es, das Wachstum und die Funktion von Blutgefäßen gezielt und möglichst ohne Nebenwirkungen therapeutisch beeinflussen zu können.

Referenz:
Charité Berlin; MDC, Max-Planck Institut, Berlin; Cambridge University; Cold Spring Harbor Lab; CHUV, CH; IBS, Korea
Control of endothelial quiescence by FOXO-regulated metabolites, Nature Cell Biology 2021; https://www.nature.com/articles/s41556-021-00637-6

#endothel #blutgefaesse #regulation #wachstum #blut #angiologie #onkologie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Entwicklungsbiologie Genetik Leben Onkologie Wissenschaft

Was Gewebe „flüssig“ macht

Bei der Untersuchung von Zebrafischembryos beobachteten WissenschafterInnen am Institute of Science and Technology (IST) Austria eine abrupte und drastische Veränderung: Innerhalb weniger Minuten verflüssigt sich das relativ feste Gewebe. Was dazu führt, konnten sie jetzt in einer multidisziplinären Studie klären.  

Zebrafische haben einige Vorteile, die ihn zu einem der beliebtesten Modellorganismen von EntwicklungsbiologInnen wie Nicoletta Petridou (IST Austria) machen. Sie entwickeln sich innerhalb von Tagen und die Embryonen tun dies außerhalb ihrer Mütter und sind transparent – man kann den Organen also beim Wachsen zusehen. Dabei zeigt sich eine plötzliche Veränderung der Viskosität des Gewebes – im frühen Stadium ist das Gewebe sehr starr, aber plötzlich sinkt die Viskosität um das Zehnfache, das Gewebe verflüssigt sich und der Embryo verändert sich deutlich. Mittels eines Konzepts der Materialwissenschaft erkannte das Team, dass jede Zelle, die nur mehr mit vier Nachbarzellen verbunden war, eine ganz besondere Grenze markiert: ab dieser Zahl lockert sich der Zellverband – und das Gewebe wird „flüssig“.

Dieser Phasenübergang im Gewebe ist essentiell für die weitere Entwicklung des winzigen Fischembryos, scheint aber auch beim Wachstum von Krebszellen eine Rolle zu spielen. Neueste Studien zeigen, dass wenn ein Tumor metastasiert, sich das Gewebe ebenfalls abrupt von fest zu flüssig verändert. Das könnte Krebszellen dabei helfen, sich leichter zu bewegen. „Wenn man diesen kritischen Punkt ermitteln kann, eröffnet das Wege, ihn zu manipulieren“, so Petridou. „Wir haben noch nicht die Werkzeuge dafür, aber anstatt sich konzeptionell auf eine Vielzahl von Genen zu konzentrieren, die beim Krebswachstum eine Rolle spielen könnten, könnte man bei dem kritischen Punkt ansetzen, der die Gewebeveränderung auslöst.“

Referenz:
IST Austria
Rigidity percolation uncovers the structural basis of embryonic tissue phase transitions. Cell 2021;

https://www.cell.com/cell/fulltext/S0092-8674(21)00167-7

#entwicklungsbiologie #zebrafisch #onkologie #krebsforschung #viskosität #wachstum #embryo #medizin #medimpressions

Fotocredit: Canva