Kategorien
Angiologie Genetik Interne Medizin Kardiologie Onkologie Wissenschaft

Wie man Blutgefäße in Schach hält

Blutgefäße sind in ihrem Inneren von einer hauchdünnen Zellschicht ausgekleidet: das Endothel.  Es stellt eine entscheidende Barriere zwischen Blut und umliegenden Gewebe dar und fördert den Austausch von Sauerstoff und Nährstoffen, verhindert aber gleichzeitig den unkontrollierten Austritt von Blutbestandteilen. Nur bei erhöhtem Stoffwechselbedarf des Gewebes, etwa bei Wachstum, Wundheilung oder auch wenn ein Tumor entsteht, geben Endothelzellen diesen stabilen Zellverband auf, um sich zu teilen und neue Blutgefäße zu bilden. Die Signale, die dieses Aktivwerden auslösen, sind gut untersucht.

Wenig wusste man bisher darüber, wie Endothelzellen ihren stabilen Ruhezustand aufrechterhalten. Genau dies haben Wissenschaftler nun herausgefunden. Sie wussten auch schon, wo sie ansetzen mussten, am Faktor FOXO1, einem Stoffwechsel- Metabolit, der das Ablesen von Erbinformation in Zellen steuert. Wie genau er dabei vorgeht, wurde nun enträtselt. Nach Isolierung sämtlicher Stoffwechselprodukte aus den Zellen, fiel auf, dass vor allem die Konzentration von 2-Hydoxyglutarat durch FOXO1 anstieg, eine Substanz, die bereits in der Krebsmedizin große Bekanntheit erlangt hat.  Die ForscherInnen fanden allerdings heraus, dass es sich um eine besondere Form des 2-Hydroxyglutarat handelt: das S-2-Hydroxyglutarat. Nur diese Substanz war in der Lage Endothelzellen in der Quieszenz, also in Ruhestellung zu halten.

Vor dem Hintergrund, dass ein „Zuviel“ oder ein „Zuwenig“ von neuen Blutgefäßen bei vielen Krankheiten eine Rolle spielt, ist es wichtig, die grundlegenden Mechanismen dahinter besser zu verstehen, sie die Studienautoren. Langfristiges Ziel ist es, das Wachstum und die Funktion von Blutgefäßen gezielt und möglichst ohne Nebenwirkungen therapeutisch beeinflussen zu können.

Referenz:
Charité Berlin; MDC, Max-Planck Institut, Berlin; Cambridge University; Cold Spring Harbor Lab; CHUV, CH; IBS, Korea
Control of endothelial quiescence by FOXO-regulated metabolites, Nature Cell Biology 2021; https://www.nature.com/articles/s41556-021-00637-6

#endothel #blutgefaesse #regulation #wachstum #blut #angiologie #onkologie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Allgemeinmedizin Angiologie Gynäkologie Hämatologie Immunologie Interne Medizin Wissenschaft

Auslöser für Autoimmunerkrankung (APS) entdeckt

Das Antiphospholipid-Syndrom (APS) ist eine Autoimmunerkrankung, bei der das Immunsystem fälschlicherweise Antikörper gegen körpereigene Bestandteile bildet. Sie richten sich gegen Blutzellen und Gefäßwandzellen was zu einer erhöhten Gerinnungsneigung des Blutes führt. Menschen mit APS neigen zu Blutgerinnseln (Thrombosen), die in der weiteren Folge zu Komplikationen wie Schlaganfall, Herzinfarkt oder Lungenembolien führen können. Bei einer Schwangerschaft ist das Risiko für eine Fehlgeburt deutlich erhöht.

APS-Antikörper werden bei 2-5% der Bevölkerung im Zusammenhang mit Autoimmunerkrankungen und chronischen Infektionen gefunden. Frauen sind etwa fünfmal häufiger betroffen sind als Männer, wobei APS als eigenständiges Krankheitsbild oder im Rahmen einer anderen Erkrankung (bspw. Lupus erythematodes) auftritt.
Mainzer Forscher deckten nun auf, dass alle krankheitsauslösenden Effekte primär durch die Bindung der Antiphospholipid-Antikörper an eine einzige Zielstruktur in den Blutgefäßen hervorgerufen werden, dem Protein-Lipid-Komplex aus dem Protein EPCR (Endothel-Protein-C-Rezeptor) und dem Lipid Lysobisphosphatidsäure (LBPA).
Binden APS-Antikörper daran, aktiviert das komplexe zelluläre Prozesse, die zu einer vermehrten Blutgerinnung und der Produktion des Botenstoffs Interferon-α führen. Daraufhin vermehren sich wiederum die B-Lymphozyten, welche neue Antiphospholipid-Antikörper produzieren und die Autoimmunreaktion weiter verstärken.

Diese bisher unbekannte Interaktion zwischen Immunsystem und Blutgerinnung bietet auch einen vielversprechenden Behandlungsansatz: Es gelang jetzt auch, einen Antikörper zu identifizieren, mit dem sich der Protein-Lipid-Komplex so blockieren lässt, dass die Effekte der Antiphospholipid-Antikörper verhindert werden und Autoimmunreaktionen ausbleiben.

Referenz:
Johannes Gutenberg-Universität, Mainz; Scripps Research, La Jolla
Lipid presentation by the protein C receptor links coagulation with autoimmunity, Science 2021; https://science.sciencemag.org/content/371/6534/eabc0956

#APS #autoimmunerkrankung #thrombose #fehlgeburt #immunsystem #blutgerinnung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Angiologie Biotechnologie Hämatologie Intensivmedizin Onkologie Wissenschaft

Mikrovehikel die gegen den Strom schwimmen

Winzige Vehikel, so klein, dass sie durch unsere Blutgefäße navigieren können, sollen es Ärzten in Zukunft erlauben, im Körperinnern Biopsien zu nehmen, Stents einzusetzen oder Medikamente präzise an schwer zu erreichende Stellen zu transportieren. Wissenschaftler weltweit erforschen und entwickeln derzeit solche Mikrovehikel. Allerdings war es bisher eine große Herausforderung, Mikrovehikel gegen einen Flüssigkeitsstrom zu bewegen. Forschende der ETH Zürich haben nun Mikrovehikel entwickelt, welche von einem externen Feld angetrieben werden und gegen den Strom schwimmen können.

Sie benutzten magnetische Eisenoxid-Polymer-Kügelchen mit einem Durchmesser von 3 Mikrometern, die sich in einem Magnetfeld zu einem Schwarm mit einem Durchmesser von 15 bis 40 Mikrometern zusammenballen. Um den Kügelchenschwarm in einem Röhrchen, das der Größe von Blutgefäßen entspricht, stromaufwärts zu bewegen, nutzten sie denselben Trick, den auch Bootsfahrer in einem Fluss nutzen: Letztere rudern in Ufernähe stromaufwärts. Dort ist die Fließgeschwindigkeit wegen des Reibungswiderstands des Ufers geringer als in der Flussmitte.

Mithilfe von Ultraschall einer bestimmten Frequenz brachten die Wissenschaftler den Mikrokügelchen-Schwarm zunächst in die Nähe der Röhrchenwand. Anschließend konnten sie den Schwarm mit einem rotierenden Magnetfeld entgegen der Flussrichtung bewegen.

„Weil sowohl Ultraschallwellen als auch Magnetfelder Körpergewebe durchdringen, ist unsere Methode gut geeignet, um Mikrovehikel auch im Körperinnern zu lenken,“ fassen die Studienleiter Daniel Ahmed und Bradley Nelson ihre Ergebnisse zusammen. Neben dem Abbau von verstopften Blutgefäßen könnten die Mikrovehikel dazu verwendet werden, um Krebsmedikamente über die Blutgefäße zu Tumoren zu bringen oder Wirkstoffe ins Hirngewebe transportieren zu können.

Referenz:
ETH Zürich
Bioinspired acousto-magnetic microswarm robots with upstream motility, Nature Machine Intelligence, https://www.nature.com/articles/s42256-020-00275-x

#mikrovehikel #blutbahn #medikamententransport #magnetfeld #therapie #onkologie #angiologie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Angiologie Geriatrie Hämatologie Interne Medizin Kardiologie Neurologie Rheumatologie Wissenschaft

Synthetische Peptide könnten Atherosklerose aufhalten

Forschung der letzten 20 Jahre hat gezeigt, dass Atherosklerose durch Entzündungsprozesse in der arteriellen Gefäßwand entsteht. Diese so genannte vaskuläre Entzündung wird durch Botenstoffe, Zytokine und Chemokine, vermittelt. Die Entwicklung von entsprechenden entzündungshemmenden Therapeutika für diese Krankheit hat sich jedoch trotz vielversprechender jüngerer Studien als schwierig herausgestellt.

Bisherige gegen Botenstoffe gerichtete Therapiestrategien bei Atherosklerose, Rheumatoider Arthritis und anderen Entzündungskrankheiten setzen vor allem auf Antikörper und Medikamente auf Basis kleiner Moleküle. Eine Münchner Forschungsgruppe hat nun kurze Aminosäureketten synthetisch hergestellt, so genannte Peptide, die wie ein Chemokinrezeptor funktionieren. Das heisst, sie ahmen bestimmte Chemokinrezeptoren nach und sind in der Lage, genau die Chemokinmechanismen selektiv zu hemmen, die die Atherosklerose fördern. Hingegen werden Chemokinmechanismen, die andere physiologisch wichtige Prozesse im Körper steuern, nicht gehemmt.
„Die hier entwickelten Mini-CXCR4-Mimetika können selektiv zwischen zwei Botenstoffen eines Rezeptors, in diesem Fall dem atypischen Chemokin MIF und dem klassischen Chemokin CXCL12, unterscheiden und so spezifisch die Wirkungen auf die Atherosklerose hemmen“, erklärt Studienleiterin Aphrodite Kapurniotu von der Technischen Universität München.

„Aktuell konnten wir unseren Ansatz zwar nur im Tiermodell bestätigen, aber eine zukünftige klinische Anwendung scheint möglich, zumal Peptidtherapeutika deutlich kostengünstiger sind als Antikörper“, so Mitautor Jürgen Bernhagen, LMU Klinikum München. Plus, das neue molekulare Konzept könnte auch therapeutisches Potenzial für andere entzündliche Krankheiten haben.

Referenz:
TUM
Desingned CXR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting; Nature Communications, 11,5981 (2020); https://www.nature.com/articles/s41467-020-19764-z

#atherosklerose #entzuendung #arterienverkalkung #arterien #therapie #chemokine #synthetischepeptide #medizin #medimpressions

Fotocredit: Canva

Kategorien
Angiologie Onkologie Wissenschaft

Mit Angelhaken durch die Blutbahn

Wie sich besonders verwinkelte und kleine Blutgefäße erreichen lassen, hat ein Team der Eidgenössischen Technischen Hochschule Lausanne (EPFL) herausgefunden. Um sich Zugang zu hauchdünnen Venen und Arterien zu verschaffen, wurde bisher ein Führungsdraht, mit dem sich Katheter an die gewünschte Stelle schieben lassen, verwendet.

Damit bleiben aber große Teile des Gehirns unzugänglich, weil die vorhandenen Geräte unhandlich sind und die Erforschung des winzigen, komplizierten zerebralen Gefäßsystems ohne Gewebeschädigung extrem schwierig ist.

Deshalb wurden nun weniger als hundert Mikrometer kleine Geräte entwickelt, die auch die feinsten und besonders verzweigten Blutgefäße erreichen. Die Instrumente bestehen aus einer magnetischen Spitze und einem flexiblen Körper aus biokompatiblen Kunststoffen. Sie funktionieren ähnlich wie ein Angelhaken im Wasser: Der Blutfluss zieht das an einem Ende festgehaltene Gerät zu den winzigsten Gefäßen im Körper. Trifft es auf eine Verzweigung, lässt es sich mittels magnetischer Computersteuerung in die gewünschte Position drehen. So wandert es entlang der Kapillaren weiter ohne Schäden an den Gefäßwänden zu verursachen. Die Machbarkeit wurde in Laborexperimenten sowie im Gefäßsystem eines Kaninchenohrs demonstriert.

In einem nächsten Schritt möchten die Forscher das System in weiteren Tierversuchen testen. Sie hoffen, dass ihre Entwicklung es einmal erlauben wird, tiefsitzende Tumore im Gehirn zu behandeln.

Referenz:
EPFL
Pressemeldung Science APA; https://science.apa.at/power-search/7166836274369196198,
Originalpublikation: Flow driven robotic navigation of microengineered endovascular probes, Nature Communications 2020, https://www.nature.com/articles/s41467-020-20195-z

#blutgefaesse #kapillaren #blutbahn #katheder #onkologie #angiologie #hirntumor #medizin #medimpressions

Fotocredit: Canva