Kategorien
Angiologie Biotechnologie Hämatologie Intensivmedizin Onkologie Wissenschaft

Mikrovehikel die gegen den Strom schwimmen

Winzige Vehikel, so klein, dass sie durch unsere Blutgefäße navigieren können, sollen es Ärzten in Zukunft erlauben, im Körperinnern Biopsien zu nehmen, Stents einzusetzen oder Medikamente präzise an schwer zu erreichende Stellen zu transportieren. Wissenschaftler weltweit erforschen und entwickeln derzeit solche Mikrovehikel. Allerdings war es bisher eine große Herausforderung, Mikrovehikel gegen einen Flüssigkeitsstrom zu bewegen. Forschende der ETH Zürich haben nun Mikrovehikel entwickelt, welche von einem externen Feld angetrieben werden und gegen den Strom schwimmen können.

Sie benutzten magnetische Eisenoxid-Polymer-Kügelchen mit einem Durchmesser von 3 Mikrometern, die sich in einem Magnetfeld zu einem Schwarm mit einem Durchmesser von 15 bis 40 Mikrometern zusammenballen. Um den Kügelchenschwarm in einem Röhrchen, das der Größe von Blutgefäßen entspricht, stromaufwärts zu bewegen, nutzten sie denselben Trick, den auch Bootsfahrer in einem Fluss nutzen: Letztere rudern in Ufernähe stromaufwärts. Dort ist die Fließgeschwindigkeit wegen des Reibungswiderstands des Ufers geringer als in der Flussmitte.

Mithilfe von Ultraschall einer bestimmten Frequenz brachten die Wissenschaftler den Mikrokügelchen-Schwarm zunächst in die Nähe der Röhrchenwand. Anschließend konnten sie den Schwarm mit einem rotierenden Magnetfeld entgegen der Flussrichtung bewegen.

„Weil sowohl Ultraschallwellen als auch Magnetfelder Körpergewebe durchdringen, ist unsere Methode gut geeignet, um Mikrovehikel auch im Körperinnern zu lenken,“ fassen die Studienleiter Daniel Ahmed und Bradley Nelson ihre Ergebnisse zusammen. Neben dem Abbau von verstopften Blutgefäßen könnten die Mikrovehikel dazu verwendet werden, um Krebsmedikamente über die Blutgefäße zu Tumoren zu bringen oder Wirkstoffe ins Hirngewebe transportieren zu können.

Referenz:
ETH Zürich
Bioinspired acousto-magnetic microswarm robots with upstream motility, Nature Machine Intelligence, https://www.nature.com/articles/s42256-020-00275-x

#mikrovehikel #blutbahn #medikamententransport #magnetfeld #therapie #onkologie #angiologie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Interne Medizin Pneumologie Wissenschaft

Lunge auf Chip

Ein Labor des ARTORG Center for Biomedical Engineering Research der Universität Bern befasst sich seit über zehn Jahren mit der Entwicklung hochspezialisierter In-vitro-Organ-Modellen, den sogenannten Organs-on-Chip. Der Schwerpunkt liegt dabei auf der Modellierung der Lunge und ihrer Erkrankungen. Nach einem ersten erfolgreichen Lunge-auf-Chip-System, das wesentliche Merkmale der Lunge aufweist, wurde nun eine rein biologische Lunge-auf-Chip der nächsten Generation entwickelt.

Pauline Zamprogno hat das neue Modell für ihre Doktorarbeit entwickelt. Die hervorstechendsten Eigenschaften der neuen Version: Das Modell reproduziert eine Ansammlung von Lungenbläschen, die mit je 250 Mikrometer Durchmesser etwa lebensgroß sind. Das System besteht aus einer dünnen, dehnbaren Membran aus Molekülen, die natürlicherweise in der Lunge vorkommen: Kollagen und Elastin. Die Membran ist stabil, kann wochenlang beidseitig kultiviert werden, ist biologisch abbaubar und ihre Elastizität ermöglicht das Simulieren von Atembewegungen durch mechanisches Dehnen der Zellen. Durch ihre Größe und die Ähnlichkeit zu echtem Lungengewebe, eignet sich das Modell nun auch zur Untersuchung verändertet Luft-Blut-Barrieren bei Lungenerkrankungen wie idiopathischer Lungenfibrose (IPF) oder chronisch-obstruktiver Lungenerkrankung (COPD).

Die Lunge-auf-Chip kann sowohl mit gesunden als auch mit erkrankten Lungenbläschen-Zellen, etwa Krebszellen, besiedelt werden. Damit erhalten Kliniker ein besseres Verständnis der Physiologie der Lunge und ein wirksames Werkzeug zum Screening möglicher neuer Wirkstoffe. So können Therapien identifiziert werden, die bestimmten Patienten am besten helfen können. Ein weiterer Vorteil der neuen Lunge-auf-Chip ist ihr Potenzial, pneumologische Forschung auf Basis von Tierversuchen zu reduzieren.

Referenz:
Universität Bern; Inselspital Bern; HIPS, Saarbrücken
Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane; Commun Biol 2021; 4:168; https://www.nature.com/articles/s42003-021-01695-0

#lunge #organonchip #lungonchip #lungenphysiologie #präzisionsmedizin #ipf #onkologie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Immunologie Molekulare Medizin Onkologie Wissenschaft

Individuelle Krebstherapien gegen Chemokinrezeptoren

CXCR4 ist ein wichtiger Oberflächenrezeptor auf Immun- und Krebszellen. Wenn dieser Chemokinrezeptor in großer Zahl auf Krebszellen zu finden ist, sorgt er unter anderem dafür, dass diese wandern und Metastasen bilden können. Auch bei jeder Entzündung ist CXCR4 mit von der Partie. Der Entzündungsherd setzt Botenstoffe aus der Klasse der Chemokine frei. Diese sorgen in den Lymphknoten dafür, dass Immunzellen sehr viele CXCR4-Antennen ausbilden, sodass Immunzellen den Entzündungsherd finden und dahin wandern können.

Der molekulare Rezeptor hat in den vergangenen Jahren für eine hitzige Debatte unter Experten gesorgt, weil sein Beziehungsstatus Rätsel aufgab. Tritt er als Single auf oder doch als Paar? Die Antwort liefern Untersuchungen des Forscherteams um Ali Isbilir des Max-Delbrück-Centrums für Molekulare Medizin. Der Rezeptor liebt es nämlich unverbindlich: er liegt mal als Single (Monomer), mal als Paar (Dimer) vor.

Wichtig ist diese Erkenntnis nicht nur für die Grundlagenforschung, sondern auch für die Pharmabranche. So konnten die Forscher zeigen, dass bestimmte Arzneien, die als CXCR4-Blocker wirken, eine Paarbildung unterdrücken können. Man nimmt an, dass die CXCR4-Paare schlecht für die Gesundheit sind. Dank einer neu entwickelten Fluoreszenzmethode können nun lebende Krebszellen direkt untersucht werden, so dass CXCR4-Blocker für Paare und Singles eingesetzt und geprüft werden kann, welche wirksamer gegen Tumore sind. So könnten etwa spezifischere Krebsmedikamente mit weniger Nebenwirkungen entwickelt und Krebstherapien individuell und so wirksam als möglich zusammengestellt werden.

Referenz:
MDC Berlin; Helmholtz Gemeinschaft

Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists, PNAS 2021, https://www.pnas.org/content/117/46/29144
Determination of G-protein-coupled receptor oligomerization by molecular brightness analyses in single cells; Nature Protocols 2021, https://www.nature.com/articles/s41596-020-00458-1

#krebs #krebstherapie #personalisiertemedizin #chemokin #rezeptor #onkologie #immunologie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Hämatologie Immunologie Molekulare Medizin Wissenschaft

Mit „Hemibodies“ gegen das Multiple Myelom

Eine der Hürden bei der Therapie des Multiplen Myeloms, einer bösartigen Erkrankung des Knochenmarks, ist die Unterscheidung zwischen den Tumor- und den gesunden Zellen des Körpers. Diese „Unschärfe“ kann bei der Behandlung von Patienten, die an dieser Krebserkrankung leiden, drastische Folgen haben: Es kann zu teils schweren, mitunter lebensbedrohlichen Nebenwirkungen kommen. Zur Lösung dieser Misere wurden Hemibodies entwickelt.

Diese Antigen-Fragmente sind sehr spezifisch und binden an bestimmten Oberflächenfragmenten von Tumorzellen. Das besondere Prinzip dieser neuen Immuntherapie besteht darin, dass sich ihre Wirkung erst dann entfaltet, wenn zwei Hemibodies auf der Oberfläche von Tumorzellen zu einer funktionalen Einheit zusammenfinden. In der Behandlung des multiplen Myeloms wurden zwei bestimmte Antigene (SLAMF7, CD38) als Zielmoleküle für die Hemibodies ausgewählt. Diese kommen beide häufig auf der Oberfläche von Myelom-Zellen vor. Jedes dieser „Targets“ für sich alleine genommen ist allerdings nicht sonderlich spezifisch, sie finden sich auf vielen Zellen des Körpers. In Kombination sind sie jedoch hochspezifisch für die Tumorzellen. Werden beide Antikörper-Fragmente injiziert, binden sie sich getrennt ans Zielmolekül, finden aber durch die räumliche Nachbarschaft zusammen. Erst dann sind sie in der Lage, T-Zellen festzuhalten und zu aktivieren, so dass Krebszellen gezielt zerstört werden können.

Sowohl im Reagenzglas als auch im Tiermodell zeigt sich, dass durch die neue Methode schwere Nebenwirkungen zuverlässig vermieden werden können, sagt Untersuchungsleiterin Maria Geis, Universität Würzburg. Mitautor Thomas Bumm ergänzt: „Unter dem Strich ist damit der Weg frei, Hemibodies zu einer effektiven und hochspezifischen Immuntherapie des Multiplen Myeloms weiterzuentwickeln.“

Referenzen:
Universität Würzburg
Combinatorial targeting of multiple myeloma by complementing T cell engaging antibody fragments. Commun Biol 2021; 4:44;  https://www.nature.com/articles/s42003-020-01558-0

#multiplesmyelom #lymphom #hemibodies #antikörper #immuntherapie #krebs #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Genetik Wissenschaft

Kleine Erbgutvariationen mit großer Wirkung

Die Zusammensetzung von Stoffwechselprodukten ist nicht nur von äußeren Einflüssen, sondern in bedeutendem Maß auch von natürlichen Variationen im Erbgut abhängig. In einer internationalen Studie haben deutsche Wissenschaftler bisher unbekannte Variationen in Genen gefunden, die die Konzentration von kleinen Molekülen im Blut teils drastisch beeinflussen. Diese Regulatoren bewirken, dass ein Stoffwechsel-Enzym aktiver oder weniger aktiv oder ein Transportprotein mehr oder weniger leistungsfähig ist und damit die Konzentration von Stoffwechselprodukten höher oder niedriger ausfällt.

Das Team um Claudia Langenberg, Charité Berlin, untersuchte den Effekt von Genvarianten auf 174 verschiedene Metaboliten an 85 000 Menschen: „Dabei fanden wir erstaunlich viele Zusammenhänge zwischen bestimmten Genvarianten und Veränderungen in der Konzentration der kleinen Moleküle im Blut“, berichtet sie. So scheinen hohe Spiegel der Aminosäure Serin im Blut vor einer seltenen Augenerkrankungen, der Makulären Teleangiektasie, zu schützen, was neue Therapieptionen eröffnet. Zudem haben sie einen neuen Mechanismus identifiziert, der erklärt, wie eine gestörte Weiterleitung von Signalen durch einen Rezeptor, (GLP2R), das Risiko erhöht, an Typ-2-Diabetes zu erkranken.

„Eine Besonderheit unserer Studie sind die extremen Effekte, die wir gesehen haben, und deren potenzielle Relevanz für die medizinische Forschung. So konnten wir Genvarianten nachweisen, deren Einfluss auf den Stoffwechsel gut dreimal so stark ist wie bisher bekannte Effekte von häufigeren genetischen Variationen, zum Beispiel auf den Body Mass Index“, erklärt Langenberg, die Forschenden weltweit eine Verknüpfung zu ihren Daten auf einer interaktiven Webseite ermöglicht.

Referenz:
BIH, Charité Berlin; Cambridge University; Melbourne University; Helmholtz Zentrum München; ICL London
A cross-platform approach identifies genetic regulators of human metabolism and health, Nature Genetics 2021, https://www.nature.com/articles/s41588-020-00751-5

#dna #erbgutvariation #stoffwechsel #diabetes #teleangiektasie #genetischesrisiko #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Genetik Pädiatrie Wissenschaft

Gelungene Behandlung von vorzeitiger Alterung

Progeria ist ein seltener Gendefekt, der Kinder rasch altern und kaum ihre Teenagerjahre erreichen lässt. Betroffene Kinder werden früh kahl, ihr Wachstum stoppt, sie magern ab, entwickeln steife Gelenke, faltige Haut, Knochenschwund und Arteriosklerose. Schuld daran ist eine Genmutation, welche die Produktion des Proteins Progerin fördert, welches zur schnellen Alterung führt. Weltweit leiden etwa 400 Menschen am Hutchinson–Gilford Progeria Syndrom.

Nun wurden Mäuse mit dieser Genmutation, mit einer Variante der Genschere CRISPR behandelt. Dadurch wurden Schäden am Herzen, die mit dem Gendefekt einhergehen, verhindert. Die von den Forschenden behandelten Progeria-Mäuse überlebten 500 Tage, mehr als doppelt so lange wie ihre unbehandelten Leidensgenossen und mehr als halb so lang wie gesunde Mäuse. Die veränderte DNA fand sich in 20 bis 60 Prozent der Mäuseknochen, Skelettmuskeln, Leber und Herz. Obwohl die Mäuse zu Beginn des Versuchs umgerechnet in Menschenjahre schon fünf Jahre alt gewesen waren, zeigten Aorta und Muskeln fast keine Zeichen von Progeria-Schäden mehr.

Ein unglaubliches Ergebnis – vor allem vor dem Hintergrund, dass frühere Ansätze nur einen geringen Erfolg zeitigten. „Das übertrifft alle Erwartungen und schreit nach Anwendung bei Progeria-Kindern – und zwar innerhalb der nächsten drei Jahre“, meint Genom-Editing-Experte Fyodor Urnov von der Berkeley Universität in Kalifornien.

Studien-Mitautorin Leslie Gordon, deren Sohn Sam an Progeria starb und welche die Progeria Research Foundation gründete, will keinen zweiten Durchgang abwarten und sofort damit beginnen, die Finanzierung von Tests an Kindern zu finden. „Wir werden einen Weg finden,“ erklärt sie: „denn diese Kinder haben keine Zeit zu verlieren.“

Referenzen:
Harvard University; National Health Institute, Bethesda
In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice, Nature 2021: 6967:491
https://www.nature.com/articles/s41586-020-03086-7

#alterung #progeria #crispr #gendefekt #progerin #hutchinsongilfordprogeria #genediting #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Onkologie Wissenschaft

Magnetische Bakterien zur Tumorbekämpfung

Wissenschaftler nutzen magnetische Bakterien, um auf der Mikroebene Flüssigkeiten zu beeinflussen. Jetzt denken sie an einen Einsatz in der menschlichen Blutbahn, um damit Krebsmedikamente präzise zu einem Tumor zu bringen.

Forschende haben solche magnetotaktische Bakterien vor 45 Jahren im Meer entdeckt. Die Mikroorganismen nehmen das im Wasser gelöste Eisen auf. In ihrem Innern bilden sich Eisenoxid-Kristalle, die sich in einer Reihe anordnen. Wie eine Kompassnadel richten sich diese Bakterien am Erdmagnetfeld aus, um so im Gewässer navigieren zu können.
Simone Schürle, ETH Zürich, bewies mit ihrem Team dass bereits verhältnismäßig schwache rotierende Magnetfelder reichen, um die Bakterien zu steuern. Ein Bakterienschwarm kann die sie umgebende Flüssigkeit bewegen. Damit erzeugen sie einen ähnlichen Effekt wie eine Mikropumpe und können so in der Flüssigkeit vorhandene Wirkstoffe in verschiedene Richtungen bewegen, wie zum Beispiel aus der Blutbahn heraus ins Tumorgewebe. Durch die Verwendung von sich überlagernden Magnetfeldern, die sich örtlich gegenseitig verstärken, beziehungsweise auslöschen, kann man diese Pumpaktivität auch auf eine kleine Region punktgenau reduzieren. Zudem kann das Prinzip außerhalb des Körpers genutzt werden, um in kleinsten Gefäßen verschiedene Flüssigkeiten lokal miteinander zu mischen, ohne mechanische Mikropumpen fabrizieren und steuern zu müssen.

Denkbar ist auch, für eine künftige medizinische Anwendung synthetische Bakterien mit optimalen funktionellen Eigenschaften zu konstruieren oder bereits tote Bakterien umzubauen und einzusetzen. Angedacht wird auch der Einsatz von bestimmten Bakterien, die ohne Sauerstoff auskommen und sich in Krebspatienten bevorzugt im sauerstoffarmen Gewebe von Tumoren anreichern.

Referenzen: ETH Zürich
Self-Replicating Ferrofluids for Fluidic Transport, Advanced Functional Materials 2020, 30: 2003912,
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202003912

#bakterien #onkologie #tumorbehandlung #wirkstofftransport #magnet #krebs #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Gastroenterologie Wissenschaft

Wirkstoff fördert Darmregeneration

Im letzten Jahrzehnt gab es einen Boom auf dem Gebiet der Organoide – Miniaturorgane, die aus Stammzellen in der Petrischale gezüchtet werden. Ein Schweizer Forschungsteam hat sich das Ziel gesetzt, die Darmregeneration zu verstehen, indem sie die funktionellen genetischen Interaktionen entschlüsseln, die diesen Prozess regulieren. Zu diesem Zweck richteten sie eine bildbasierte Plattform für die Hochdurchsatzanalyse ein. Hiermit erstellten sie Profile von über 400 000 Organoiden, die mit einer Reihe von Wirkstoffen behandelt wurden. Ziel war, zu beurteilen, welche Wirkstoffe die Organoide beeinflussen. Dann klassifizierten sie jedes Organoid nach seiner Erscheinungsform (Phänotyp) und erstellten für jeden der 3000 untersuchten Wirkstoffe einen einzigartigen „phänotypischen Fingerabdruck“.

Dieser Datensatz ermöglichte es den Forschenden, 230 Gene zu identifizieren, die an der Entwicklung von Organoiden beteiligt sind, sowie ihre funktionellen genetischen Interaktionen. Zu den Treffern des Screens gehörte ein Hemmstoff des sogenannten Retinsäure-Signalwegs, der die regenerativen Eigenschaften der Organoide förderte. Auch im Tierversuch mit Mäusen mit strahleninduzierten Darmschäden stellten die Wissenschaftler eine bessere Erholung der Tiere fest, wenn sie mit dem Wirkstoff behandelt wurden: Sie zeigten eine verbesserte Geweberegeneration und verringerten Gewichtsverlust.

Die Erkenntnisse könnten den Weg für neuartige Therapien ebnen, die die Regeneration und Erholung des Darmepithels nach einer akuten Schädigung fördern, zum Beispiel bei Krebspatienten, die eine Chemo- oder Strahlentherapie erhalten.

Referenzen:

Universität Basel, Friedrich Miescher Institut for Biomedical Research (FMI), Basel

Phenotypic landscape of intestinal organoid regeneration, Nature (2020), https://doi.org/10.1038/s41586-020-2776-9

#darm #organoid #hochdurchsatzanalyse #regeneration #retinsaeure #krebs #darmschäden #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Ophthalmologie Wissenschaft

Vollständige künstliche Netzhaut gezüchtet

Dem Forschungsteam unter Prof. Botond Roska, Universität Basel, ist es gelungen, Replikas menschlicher Retina zu züchten. Das Gewebe wird als Netzhaut-Organoid bezeichnet, da es dieselben Eigenschaften aufweist wie menschliche Netzhaut – einschliesslich der Krankheitsparameter von individuellen Patienten. Für die Züchtung der Mini-Organe benötigten die Forscher nur Haut oder Blutproben der Patienten.

Die Netzhaut-Organoide sind so besonders, weil sie wie die menschliche Netzhaut eine Schichtstruktur haben und auch auf Licht in gleicher Weise reagieren. Der detaillierte Vergleich der gezüchteten Netzhaut-Organoide mit Netzhaut von Multi-Organspendern bestätigt die starken Ähnlichkeiten. „Wir konnten zeigen, dass unsere kultivierten Organoide nach 38 Wochen viele derselben Zelltypen aufweisen, wie die Netzhaut eines erwachsenen Menschen,“ so Roska. „Wir waren die Ersten, die menschliche Netzhaut von Verstorbenen funktionsfähig und lichtempfindlich erhalten konnten.“ Das machte die Vergleiche überhaupt erst möglich.

Der grosse Wert der Netzhaut-Organoide gründet auf dem Beweis, dass gleiche Defekte in jeweils denselben Zelltypen zu denselben Netzhauterkrankungen in den Organoiden und in menschlicher Netzhaut führen. „Damit können Behandlungen entwickelt werden, die für diese Patienten massgeschneidert sind’, sagt Magdalena Renner, Erstautorin der Publikation und Leiterin der Human Organoid Platform am Institut für Molekulare und Klinische Ophthalmologie Basel. Die Erkenntnisse beschleunigen die Entwicklung neuer Therapien für Netzhauterkrankungen, die bisher zur Erblindung führen.

Referenzen:

Universität Basel https://www.unibas.ch/de/Aktuell/News/Uni-Research/Forschende-zuechten-menschliche-Netzhaut.html;

Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution;
Cell (2020), https://doi.org/10.1016/j.cell.2020.08.013

#retina #netzhaut #organoid #miniorgan #ophtalmologie #augen #augenerkrankung #medizin #medimpressions 

Fotocredit: Canva

Kategorien
Biotechnologie Infektiologie Virologie Wissenschaft

Biomaterial aus Spinnenseide verhindert Infektionen und fördert Heilung

Mit einem neuartigen Forschungsansatz haben Wissenschaftler der Universität Bayreuth aus biotechnologisch hergestellten Proteinen der Spinnenseide ein Material entwickelt, das krankheitserregende Mikroben darin hindert, sich an den Oberflächen anzulagern. Sogar multiresistente Staphylococcus aureus (MRSA) haben keine Chance, sich auf der Oberfläche des Materials einzunisten. Das nanostrukturierte Material verhindert nicht nur die Ansiedlung von Bakterien und Pilzen, sondern unterstützt auch gleichzeitig proaktiv die Regeneration von menschlichem Gewebe. Daher eignet sich das Material hervorragend für Implantate, Wundverbände, Prothesen, Kontaktlinsen und andere Hilfsmittel des Alltags. 

Im Unterschied zu anderen Materialien, die bislang zur Wiederherstellung von Gewebe eingesetzt werden, ist das Infektionsrisiko von vornherein gebannt. „Die mikrobenabweisenden Eigenschaften der von uns entwickelten Biomaterialien basieren nicht auf toxischen, also nicht auf zelltötenden Wirkungen. Entscheidend sind vielmehr Strukturen im Nanometerbereich, welche die Spinnenseidenoberflächen mikrobenabweisend machen. Krankheitserregern ist es dadurch unmöglich, sich auf diesen Oberflächen festzusetzen“, erklärt Prof. Dr. Thomas Scheibel.

„Faszinierend an diesen Forschungsergebnissen ist auch, dass sich die Natur wieder einmal als ideales Vorbild für extrem anspruchsvolle Materialkonzepte erwiesen hat. Natürliche Spinnenseide ist hochgradig resistent gegen den mikrobiellen Befall, und die Reproduktion dieser Eigenschaften auf biotechnologischem Weg sehe ich als bahnbrechend“, sagt Prof. Dr.-Ing. Gregor Lang, einer der beiden Erstautoren.

Universität Bayreuth: https://www.uni-bayreuth.de/de/universitaet/presse/pressemitteilungen/2020/117-mikrobenabweisende-biomaterialien/index.html

Originalpublikation: Engineered spider silk-based 2D and 3D materials prevent microbial infestation. Materials Today (2020), DOI: https://dx.doi.org/10.1016/j.mattod.2020.06.009

#spinnenseide #multiresistent #mikroben #nanostruktur #infektion #heilungsprozess #infektiologie #wundheilung #bakterien #pilze #gewebsregeneration #mikrobenabweisend #medizin #medimpressions

Fotocredit: Canva