Kategorien
Diagnostik Gesundheitsökonomie Infektiologie Leben Virologie Wissenschaft

Wie man Covid-Kurven zerschmettert

Kleine Unterschiede im Verhalten entscheiden über Erfolg oder völligem Versagen der Seuchenbekämpfung. So lautet die Zusammenfassung einer Untersuchung von WissenschaftlerInnen am IST Austria, die eben in der Zeitschrift Nature Communications erschien.

Ein Team von Strömungsphysikern berechnete, dass schon kleine Unterschiede im Maßnahmenpaket gegen Epidemien einen Sprung bei den Infektionszahlen verursachen können. Infektionsausbreitungen verhalten sich im Grunde wie Turbulenzen in Flüssigkeiten wobei bestimmte Handlungen einen deutlichen Effekt auf diese Turbulenzen zeigen. Im Rahmen der Pandemie erwartete man, dass Erkrankungskurven gemäß dem Grad der sozialen Distanzierung abflachen. Dies war jedoch nicht der Fall. Als entscheidende Schlüsselfaktoren erwiesen sich Kontaktverfolgung und Testung. Ist das Contacttracing nicht überlastet und werden die Kontaktpersonen von Infizierten ausreichend getestet, führt dies dazu, dass die Erkrankungszahlen auf rund drei Prozent der Bevölkerung schrumpfen.

Kommt das Infektionsgeschehen aber an einen Punkt, an dem die Kontaktnachverfolgung überfordert ist, steigt die Zahl der Infizierten rasant. „Wenn das passiert“, so die Forscher, „beginnt sich die Krankheit in den unkontrollierten Gebieten schneller auszubreiten und das führt unweigerlich zu einem superexponentiellen Anstieg der Infektionen.“ Schon exponentielles Wachstum ist immens. Es bedeutet eine Verdoppelung der Infektionen alle paar Tage. Überexponentiell bedeutet aber, dass auch die Rate der Verdopplung immer schneller wird. Dies scheint im letzten Herbst („zweite Welle“) passiert zu sein.

„Die meisten europäischen Länder reagieren erst, wenn die Kapazitäten der Intensivmedizin bedroht sind“, so die Forscher: „Eigentlich müssten die Entscheidungsträger aber auf ihre Kontaktverfolgungsteams achten und abriegeln, bevor dieser Schutzschild zusammenbricht.“

Referenz:
IST Austria, TU Dresden
Discontinuous epidemic transition due to limited testing, Nature Comm 2021;  https://www.nature.com/articles/s41467-021-22725-9

#pandemie #covid #contacttracing #test #infektionszahlen #eindaemmung #massnahmen #medizin #medimpressions

Fotocredit: Canva

Kategorien
Infektiologie Wissenschaft

Covid-19: Genesene benötigen nur eine Impfung!

WissenschaftlerInnen vom Imperial College London bestätigen, dass für Covid-19 Genesene eine Vakzine-Dosis reicht, um den Impfschutz aufrecht zu erhalten.

In ihren Untersuchungen erzielte eine Einzelimpfung eine deutliche Booster-Wirkung mit starker Reaktion auf die zelluläre Immunantwort, verglichen mit Personen, die nicht an Covid19 erkrankt waren und ihre erste Erst-Immunisierung erhielten.

Offenbar löste der Erstkontakt mit dem Virus im Rahmen der Covid19-Erkrankung bereits eine starke Immunantwort aus.

Zusätzlich wurde nachgewiesen, dass die Einmalimpfung (getestet wurde Comirnaty) nach erfolgter Erkrankung auch gut gegen die gefürchteten („südafrikanischen“, „britischen“) Virusvarianten schützt.

Referenz:
Imperial College London

Science.APA; Kontakt mit ganzem Virus führt zu besserem Impfschutz, 7.5.2021; https://science.apa.at/power-search/14485075189815258177

Kategorien
Allgemeinmedizin Infektiologie Intensivmedizin Interne Medizin Pneumologie Virologie Wissenschaft

Covid-19: Von Asthmasprays wird abgeraten

In Österreich haben Menschen Asthmasprays gehamstert, die laut einer britischen Studie Covid-19-Erkrankungen lindern könnten, sodass Asthmapatienten diese wichtigen Medikamente teils nicht mehr in den Apotheken bekamen. Die Studie wurde aber so mangelhaft durchgeführt, dass man derzeit keine Asthmaspray-Inhaltsstoffe bei Covid-19-Erkrankungen empfehlen kann, erklärten österreichische und deutsche Lungenmediziner bei einer Online-Pressekonferenz.

„Das Studiendesign hat große Probleme“, erklärte etwa Marco Idzko von der Medizinischen Universität Wien. Die Forscher schlossen zum Beispiel den Placeboeffekt nicht aus, dass Patienten sich besser fühlen, obwohl sie bloß ein Scheinmedikament erhalten. Die Ärzte überreichten ihnen den Asthmaspray mit der Erklärung, dass man davon ausgehen könne, dass er ihnen hilft. Die anderen bekamen nichts und mussten darauf hoffen, dass es ihnen nicht sehr schlecht geht.

„Als wichtigste Verbesserung wurde in der Publikation beschrieben, dass die Patienten mit dem Asthmaspray weniger oft die Rettung riefen, tatsächlich hing ein Großteil der Krankenhaus- und Arztbesuche gar nicht mit Covid-19 zusammen“, sagte Idzko.
Bei allen medizinisch nachweisbaren, aussagekräftigen Dingen wie der Viruslast im Körper und der Sauerstoffsättigung im Blut, die bei Atemnot durch eine Covid-19 Erkrankung sinkt, hatte sich kein Unterschied zwischen den Patienten mit und ohne Asthmaspray gezeigt. Zudem war die Zahl der Versuchspersonen mit 73 Patienten in der behandelten Gruppe und ebenso vielen in der Kontrollgruppe sehr niedrig.

Idzko appellierte daher, bei Covid-19 keine inhalativen Glukokortikoide zu verschreiben, um Nebenwirkungen einer hohen Dosierung und eine Verknappung der Medikamente für Asthmapatienten zu vermeiden.

Referenz:
Pressemeldung: Science APA, 29.4.2021; Mediziner raten von Asthmasprays gegen Covid-19 ab; Stellungnahme der Fachgesellschaften: https://pneumologie.de/fileadmin/user_upload/COVID-19/20210419_DGP_OEGP_DGAKI__C19_und_ICS__STOIC-Studie.pdf

#glukokortikoide #asthmaspray #covid19 #kortison #studie #placeboeffekt #budesonid #medizin #medimpressions

Fotocredit: Canva

Kategorien
Genetik Infektiologie Leben Technologie Wissenschaft

The Dance of Spike – Spikeproteine im Discofieber

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

Ein Video der Johannes Kepler Universität Linz (JKU) zeigt, wie sich das Lektin CLEC4G an die Zuckermoleküle des Spikeproteins von SARS-CoV-2 heftet. Das Spike-Protein erweist sich dabei als erstaunlich geschmeidig und tanzfreudig.

Diese Beweglichkeit überraschte auch die Forscher, da das quasi dreiseitige S-Protein auf den Bildern immer „relativ geschlossen“ aussieht, erklärt Peter Hinterdorfer vom Institut für Biophysik der Universität Linz: „Wir haben aber gesehen, dass es an den Oberflächen eigentlich aufmacht und die drei Arme dynamisch sind.“

Hinter den Aufnahmen steckt eine Forschungsarbeit zu einer Idee um den Genetiker Josef Penninger, bei der man dem SARS-CoV-2-Virus mittels Lektinen den Schlüssel für menschliche Zellen „verkleben“ möchte. Erste Ergebnisse sind vielversprechend. So konnten bereits zwei von 140 untersuchten Lektinen isoliert werden. Diese könnten möglicherweise andere Substanzen, wie etwa das sich in fortgeschrittener klinischer Erprobung befindliche Medikament APN01, ein biotechnologisch hergestelltes menschliches Angiotensin Converting Enzym 2 (rhACE2), das ebenfalls an das Spike-Protein bindet, unterstützen.

Penninger: „Mit beiden Lektinen haben wir erstmals die Möglichkeit, das Virus über dessen Zuckerhülle zu binden und zu neutralisieren. Die Stellen, an denen das SARS-CoV-2 S-Protein mit den Zuckermolekülen modifiziert wird, sind hoch-konserviert und finden sich in allen derzeit zirkulierenden Mutanten wieder. Womöglich ist das die Achillesferse des Virus.“

Referenz:
Video: Johannes Kepler Universität Linz;
APA Pressemeldung 27.April 2021;
Originalliteratur: Identification of lectin receptors for conserved SARS-CoV-2 glycosylation sites, bioRxiv April 2021; https://www.biorxiv.org/content/10.1101/2021.04.01.438087v1

#spikeprotein #lektin #sarscov2 #pandemie #covid19 #corona #viren #medizin #medimpressions

Fotocredit: Johannes Kepler Universität Linz

Kategorien
Allgemeinmedizin Infektiologie Intensivmedizin Pädiatrie Wissenschaft

Pandemiemaßnahmen verhindern Hirnhautentzündungen

Ein Forschungsteam des Inselspitals (Universität Bern) verkündete kürzlich eine überraschende Entdeckung: Während der Covid-19-Pandemie gab es in ihrem Versorgungsgebiet keinen einzigen Fall einer enteroviralen Hirnhautentzündung (Meningitis) bei Säuglingen.

Enterovirale Hirnhautentzündungen bei Säuglingen und Kindern werden hauptsächlich fäkal-oral übertragen, das heißt, Erreger aus Fäkalien gelangen durch den Mund in den Organismus, z. B. durch verunreinigtes Trinkwasser.
Aufgrund der Werte aus den Jahren 2010-2019 waren für 2020 gut 20 Säuglinge (0-1 Jahre) mit einer enteroviralen Hirnhautentzündung zu erwarten. Tatsächlich wurde im Pandemiejahr kein einziger positiver Befund bei einem Säugling ermittelt. Auch bei Kindern im Alter von 1 bis 16 Jahren wurde ein drastischer Rückgang verzeichnet. Es ist anzunehmen, dass die Pandemiemaßnahmen für diesen Effekt verantwortlich sind. Dies erstaunt umso mehr, als während des Sommers die Mehrzahl der Pandemiemaßnahmen zurückgefahren oder aufgehoben worden waren.

Bereits bekannt ist, dass Pandemiemaßnahmen zur Einschränkung von SARS-CoV-2 auch Auswirkungen auf das Auftreten anderer viraler Atemwegserkrankungen haben. Die positiven Auswirkungen beziehen sich vorwiegend auf Viren, die über die Atemluft via Tröpfcheninfektion übertragen werden. Das beobachtete vollständige Ausbleiben von enteroviralen Hirnhautentzündungen bei Säuglingen weist nun darauf hin, dass auch Viren, die normalerweise fäkal-oral übertragen werden, mit den Pandemiemaßnahmen an der Ausbreitung gehindert werden. Interessant ist dabei der Umstand, dass während des Sommers nur zwei Maßnahmen durchwegs aufrechterhalten wurden: Die Händehygiene und das Social Distancing. Dagegen waren die Kinderhorte ebenso wie die Schulen geöffnet.

Referenz:
Universität Bern
Striking Decrease of Enteroviral Meningitis in Children During the COVID-19 Pandemic, Open Forum Infectious Diseases/Oxford Academic 2021;
https://academic.oup.com/ofid/advance-article/doi/10.1093/ofid/ofab115/6214893

#hirnhautentzuendung #meningitis #saeugling #viren #pandemie #handhygiene #socialdistancing #medizin #medimpressions

Fotocredit: Canva

Kategorien
Entwicklungsbiologie Genetik Infektiologie Molekulare Medizin Neurowissenschaften Onkologie Virologie Wissenschaft

Wie Viren das wachsende Gehirn schädigen

Viren befallen unterschiedlichste Gewebestrukturen in unserem Körper und nutzen spezielle Proteine wie Türöffner, um ins Innere der Zelle zu gelangen und diese dann für ihre eigene Fortpflanzung zu „hacken“: Die Zelle produziert fortan nur noch andere Viren und keine eigenen Zellnachkommen. Während der menschlichen Gehirnentwicklung sind manche Vireninfektionen daher besonders kritisch – die Folge können schwere Fehlbildungen im Gehirn sein. Für werdende Mütter ist daher besondere Vorsicht vor Infektionserregern wie Toxoplasma gondii, Röteln-Viren, CMV, ZIKA-Viren und Herpes-simplex-Viren (HSV) geboten.

Bislang war es nicht möglich, den Einfluss bestimmter Viren auf die Gehirnentwicklung systematisch am Menschen zu untersuchen. Eine einzigartige Technologie, die weltweit erstmals am Institut für Molekulare Biotechnologie in Wien entwickelt wurde, erlaubt es nun, den Einfluss von Infektionen auf die menschliche Gehirnentwicklung neu zu beleuchten und innovative Therapien zu testen. Dies funktioniert an Gehirn-Organoiden, die aus menschlichen Stammzellen herangezüchtet werden. Diese können etwa aus einem kleinen Stück Haut oder einer Blutprobe gewonnen werden. Untersucht wurden aktuell ein Virenbefall durch ZIKA und das Herpes Simplex Virus. Diese wurden in der Petrischale „infiziert“, um den Einfluss der Erreger auf die Gehirnentwicklung zu studieren.

Die Organoide bieten auch ein ideales Modellsystem, um die Entwicklung neuer Therapien gegen Viren, die das menschliche Gehirn befallen, anzutreiben. Im Labor gelang es ForscherInnen bereits, Herpes infizierte Gehirn-Organoide durch die Gabe von Interferon Typ 1 vor Fehlbildungen zu schützen. In Zukunft soll eine Vielzahl weiterer Substanzen getestet werden und das Modell auch in der Krebsforschung eingesetzt werden.

Referenz:
IMBA Wien
Organoid modeling of Zika and Herpes Simplex Virus 1 infections reveals virus-specific responses leading to microcephaly; Cell Stem Cell 2021, https://www.sciencedirect.com/science/article/abs/pii/S1934590921001107

#viren #schwangerschaft #gehirnentwicklung #testsystem #organoid #herpes #interferon #medizin #medimpressions

Fotocredit: Canva

Kategorien
Diagnostik Infektiologie Intensivmedizin Interne Medizin Molekulare Medizin Technologie Virologie Wissenschaft

„Bakterienfressende“ Viren gegen multiresistente Keime

Bakteriophagen sind spezielle Viren, die ausschließlich Bakterien angreifen und deshalb eine Alternative zu Antibiotika darstellen können. Ein Team aus österreichischen, deutschen und schweizerischen Forschern konnte nun erstmals zeigen, dass gezielt herangezüchtete Phagen deutlich besser gegen multiresistente Keime wirken als bekannte Wildtypen (die ursprüngliche Form der Bakterien). 

Eine Therapie mit „bakterienfressenden“ Viren gilt schon seit einiger Zeit als aussichtsreiche Option zur Therapie von schwer zu behandelnden Infektionen mit multiresistenten Bakterien. Sie wirken viel gezielter auf die krankheitsverursachende Bakterienspezies und können typische Resistenzmechanismen von Bakterien umgehen. Die gezüchteten Phagen sind aber derart exakt an ihr Wirtsbakterium angepasst, dass selbst eng verwandte Stämme der gleichen Bakterienart nicht mehr von ihnen angegriffen werden und sie dadurch nur eine geringe Gesamtwirkung zeigen. Mischt man diese mit natürlich vorkommenden Phagen, wirkt die Mixtur zwar besser, aber im besten Fallt oft nur bei der Hälfte aller Zielbakterien.

Ein österreichisches Unternehmen kreuzte nun verschiedene Phagen und selektierte diejenigen, die ein möglichst breites Spektrum an Bakterienstämmen angreifen konnten. Eine Mischung der so gezüchteten Phagen wurde nun an 110 Staphylokokken-Stämmen getestet (43 Prozent von ihnen waren bereits multiresistente MRSA-Varianten).
Das Resultat nach der Behandlung mit den gezüchteten Phagen: Bei 101 der 110 Bakterienstämme wurde das Wachstum erfolgreich unterbunden. Damit könnte die neue Therapie bei manchen Krankheitsbildern als ernsthafte Alternative zur antibiotischen Behandlung von MRSA-Infektionen in Betracht gezogen werden, meinen die Forscher.

Referenz:
Friedrich-Schiller-Universität Jena, Université de Lausanne, Universität Dresden
ε2-Phages Are Naturally Bred and Have a Vastly Improved Host Range in Staphylococcus aureus over Wild Type Phages. Pharmaceuticals 2021;  https://www.mdpi.com/1424-8247/14/4/325

#multiresistenz #mrsa #antibiotika #phagen #staphylokokken #bakterien #infektion #medizin #medimpressions

Fotocredit: Canva

Kategorien
Infektiologie Interne Medizin Pneumologie Virologie Wissenschaft

SARS-CoV-2 liebt´s cool

SARS-CoV-2, das Virus, das COVID-19 verursacht, hat weltweit zu über 125 Millionen Ansteckungen und 2.7 Millionen Todesfällen geführt. Es ist ein enger Verwandter von SARS-CoV, einem anderen Coronavirus, das in den Jahren 2002-2003 zu 8’400 Ansteckungen und 800 Todesfällen führte.

Die Viren ähneln sich in ihrem genetischen Aufbau und benutzen auch denselben Rezeptor, um menschliche Zellen zu infizieren. Trotzdem gibt wichtige Unterschiede zwischen den beiden: SARS-CoV führt zu einer schweren Erkrankung und Entzündung der unteren Atemwege – und infizierte Personen sind erst nach dem Auftreten von Symptomen ansteckend. SARS-CoV-2 bevorzugt die oberen Atemwege (Nasenhöhle, Rachen, Luftröhre) und kann leicht von einer Person zur anderen übertragen werden, bevor Krankheitssymptome auftreten.

Um die Unterschiede zwischen beiden Virusstämmen herauszuarbeiten, haben Forschende Kulturen von menschlichen Atemwegszellen verwendet, um so einen künstlichen Atemtrakt nachzubauen. In diesem offenbarte sich, dass die Umgebungstemperatur eine wichtige Rolle spielt. SARS-CoV-2 vermehrte sich auch rege bei 33°C, das entspricht etwa der Temperatur des oberen Atemwegstrakts. SARS-CoV hingegen bevorzugt höhere Inkubationstemperaturen.

Dies könnte erklären, warum sich SARS-CoV-2 bei niedrigeren Temperaturen effizienter ausbreitet. Bei 37°C, wie sie in den unteren Atemwegen herrschen, wird hingegen die angeborene Immunantwort der Epithelzellen stärker stimuliert und das Virus effizienter bekämpft, so dass es zu einer überschießenden Immunreaktion kommen kann. Hohe Entzündungswerte wiederum lösen Gewebeschäden aus und beschleunigen das Fortschreiten der Krankheit. Ein Phänomen, das bei schweren COVID-19-Fällen zu beobachten ist.

Referenz:
Universität Bern
Disparate temperature-dependent virus – host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium. PLOS Biology 2021, https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001158

#sars-cov-2 #sars #covid19 #pandemie #verbreitung #temperatur #atemwege #medizin #medimpressions

Fotocredit:Canva

Kategorien
Allgemeinmedizin Infektiologie Pneumologie Wissenschaft

Tuberkulose: Wann ist eine Behandlung zu Ende?

Die Behandlung der Tuberkulose (TB) ist lang, belastend und teuer. Insbesondere das Auftreten von resistenten Tuberkulosebakterien erfordert einen langen Atem: Die WHO empfiehlt in diesen Fällen meist pauschal eine Therapiedauer von mindestens 18 Monaten, da es keine zuverlässigen Biomarker für einen vorzeitigen Stopp gibt. PatientInnen bei denen die Standardtherapie anschlägt, können unter Umständen aber nach sechs Monaten austherapiert sein. Wann sollte die mitunter nebenwirkungsreiche und belastende Therapie also ausgesetzt werden? Vor dieser Frage stehen MedizinerInnen immer wieder aufs Neue, denn der fehlende Nachweis des Tuberkuloseerregers Mycobacterium tuberculosis ist keine Gewähr für eine dauerhafte Heilung der Lungeninfektion.

Gemeinsam mit internationalen Tuberkulosezentren konnten deutsche Forschende nun nach sechs Jahren Forschungsarbeit und anhand von Patientenkohorten ein Modell für das Therapieende entwickeln, das auf einer RNA-Bestimmung im Blut beruht. Es konnten aus vielen Tausend Genen 22 identifiziert werden, deren Aktivität mit dem Krankheitsverlauf korreliert. Dieser Biomarker könnte eine klare Auskunft darüber geben, ob der Patient geheilt ist und eine Behandlung gefahrlos verkürzt werden kann.

Für die Identifizierung dieses individuellen Biomarkers haben die WissenschaftlerInnen fünf unterschiedliche Patientenkohorten aufgebaut. Dabei handelte es sich in allen Fällen um Erwachsene, die an Lungentuberkulose erkrankt waren, zum Teil an nicht-resistenten, z. T. an resistenten Formen. Im nächsten Schritt soll der Biomarker nun in der klinischen Routine eingesetzt und weiterhin getestet werden.

Referenz:
Research Center Borstel; Universität Lübeck, Karolinska Institut, Stockholm, Max Planck Institut Berlin, München; Kepler Universität, Linz
Prediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic model,
European Respiratory Journal 2021; https://erj.ersjournals.com/content/early/2021/01/28/13993003.03492-2020.long

#tuberkulose #biomarker #therapieende #resistenz #rna #mycobacterium tuberculosis #lunge #medizin #medimpressions

Fotocredit: Canva

Kategorien
Allgemeinmedizin Infektiologie Interne Medizin Wissenschaft

Borreliose-Erreger sind offenbar sehr mobil

Zecken sind gefährliche Plagegeister – unter den Krankheiten, die sie übertragen können, befindet sich auch Borreliose. Rund 70.000 ÖsterreicherInnen erkranken jedes Jahr daran (die Zeckenimpfung schützt nicht dagegen). Wie es den Erregern gelingt, das Immunsystem zu überwinden, hat ein Team um Forscherin Yoo Jin Oh vom Institut für Biophysik der Universität Linz herausgefunden. Der Trick: Mobilität.

Fast jede dritte Zecke trägt Borreliose-Bakterien in sich. Diese können sich effizient im Gewebe einnisten und verbreiten. Dabei überlassen die Krankheitserreger (Pathogene) es nicht dem Zufall, wohin sie gelangen. „Im Gegensatz zu vielen anderen Bakterien oder Viren zirkulieren sie nicht passiv in den Körperflüssigkeiten des Wirts“, erklärt Oh. „Borreliose-Bakterien sind Spirochäten. Das sind Mikroorganismen, die mit einzigartigen Korkenzieher-Rotationsbewegungen durch Geißeln, die unter der äußeren Membran verborgen sind, in gel-artigen Medien wie unserem Blutkreislauf schwimmen können.“

Die einzelnen Bakterien können sich nicht nur aktiv bewegen, sondern auch gezielt festsetzen. Dazu ist die Oberfläche der Borreliose-Bakterien ideal an den Blutkreislauf angepasst. Durch verschiedene Mechanismen binden sich die Oberflächen-Proteine der Erreger und reagieren so mit dem Bindegewebe des Menschen. Auch dabei setzen die Bakterien auf Flexibilität: Manche Bindungen werden im Blutstrom schnell wieder beendet, andere Bindungen werden sogar verstärkt. Kurzlebige Verbindungen werden dabei als eine Art „Wegweiser“ benutzt.

Aufgedeckt wurden die bakteriellen Aktivitäten mit Hilfe der Einzelmolekül-Kraftspektroskopie mit der nun auch geprüft werden soll, ob die Fortbewegungsweise auch auf andere Erreger zutrifft und ob sich hier Ansätze für neue Behandlungsmethoden finden lassen.

Referenz:
Johannes Kepler Universität Linz
Nanomechanical mechanisms of Lyme disease spirochete motility enhancement in extracellular matrix, Communications Biology; https://www.nature.com/articles/s42003-021-01783-1

#borreliose #zecken #lymedisease #borrelien #infektion #uebertragung #bakterien #medizin #medimpressions

Fotocredit: Canva