Kategorien
Biotechnologie Digital Health Genetik Molekulare Medizin Technologie Wissenschaft

Computerspiele für Forscher

Je größer und umfassender Netzwerke sind, desto schwieriger wird auch ihre Darstellung auf dem Bildschirm. Dies betrifft auch die Interaktion verschiedener Proteinkomplexe im menschlichen Körper. Der Netzwerkwissenschaftler Jörg Menche und seine Forschungsgruppe am CeMM Forschungszentrum für Molekulare Medizin entwickelten nun eine Virtual Reality-Plattform, die es ermöglicht, riesige Datenmengen und deren komplexes Zusammenspiel auf eine einzigartige, intuitive Weise zu untersuchen. Dabei bedienten sie sich der Technologie, die normalerweise in der Entwicklung von 3-D-Computerspielen genutzt wird.

Der menschliche Körper stellt mit seinen rund 20.000 Proteinen, die im menschlichen Genom codiert sind und miteinander interagieren, ein riesiges komplexes Netzwerk dar. Stellt man die Protein-Interaktionen dar, entsteht ein kaum darstellbares Bild aus rund 18.000 Punkten – Proteinen – und rund 300.000 Strichen zwischen diesen Punkten.
Um dieses Bild „lesbar“ zu machen, schafften es die ForscherInnen erstmals, die Gesamtheit der Proteininteraktion sichtbar zu machen, um das riesige und komplexe Netzwerk interaktiv erkunden zu können.

Die 3-dimensionale Darstellung kann insbesondere bei der Identifikation seltener Gendefekte wichtig und entscheidend für therapeutische Maßnahmen sein. „Unsere Studie stellt einerseits einen wichtigen „Proof of concept“ unserer VR-Plattform dar, andererseits zeigt sie unmittelbar das enorme Potenzial der Visualisierung molekularer Netzwerke“, so Projektleiter Menche. „Gerade bei seltenen Erkrankungen, schweren Immunerkrankungen, können Proteinkomplexe, die mit spezifischen klinischen Symptomen assoziiert werden, genauer analysiert werden, um Hypothesen über ihre jeweiligen pathobiologischen Mechanismen zu entwickeln. Dies erleichtert die Annäherung an Erkrankungsursachen sowie infolge die Suche nach gezielten therapeutischen Maßnahmen.“

Referenz:
CeMM, St. Anna Kinderkrebsforschung Wien
VRNetzer: A Virtual Reality Network Analysis Platform, Nature Communications 2021; https://www.nature.com/articles/s41467-021-22570-w

#virtualreality #forschung #proteine #interaktionen #darstellung #3D #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Genetik Molekulare Medizin Onkologie Tumorbiologie Virologie Wissenschaft

Tiere mit eingebauter Genschere

Gentechnisch veränderte Tiere liefern wichtige Erkenntnisse über die molekularen Grundlagen von Gesundheit und Krankheit. Die Forschung hat sich hauptsächlich auf gentechnisch veränderte Mäuse konzentriert, obwohl andere Spezies, wie etwa Schweine, der menschlichen Physiologie ähnlicher sind.
ForscherInnen der Technischen Universität München (TUM) zeigen jetzt einen Weg auf, wie molekulare Mechanismen von Krankheitsresistenzen oder biomedizinische Fragestellungen im Nutztier effizient untersucht werden können: In der Grundlagen- und biomedizinischen Forschung können die Forschenden jetzt Gen-Mutationen gezielt in ein Wunschorgan einbringen oder auch bestehende Gene korrigieren, ohne für jedes Ziel-Gen neue Tiermodelle erzeugen zu müssen. Dies reduziert auch die Anzahl an Versuchstieren.

Ermöglicht wurde dies durch den Einbau des richtigen Werkzeugs, der „Genschere“ CRISPR/Cas9, die dauerhaft in den Organen von zwei Tierspezies – Schweinen und Hühnern – eingebracht wurde, um die Informationen der DNA punktgenau umzuschreiben zu können. Gene können damit inaktiviert oder gezielt modifiziert werden. „Es müssen also nur noch die leitenden RNAs eingebracht werden, um Tiere zu bekommen, die bestimmte genetische Eigenschaften haben“, so Mitautor Benjamin Schusser (TUM).

Besonders nützlich sind die von den Forschenden erzeugten gesunden Hühner und Schweine im Bereich der biomedizinischen und landwirtschaftlichen Forschung. So werden Schweine gerne als Krankheitsmodelle in der Krebsforschung eingesetzt, da ihre Anatomie und Physiologie dem Menschen viel mehr ähnelt als die der Maus. Der Mechanismus des CRISPR/Cas9 Systems kann außerdem zur Bekämpfung von Infektionen mit DNA-Viren nützlich sein. „Erste Arbeiten in Zellkulturen zeigten, dass das für das Geflügel-Herpesvirus schon funktioniert“, so Schusser.

Referenz:
TU München
Cas9-expressing chickens and pigs as resources for genome editing in livestock, PNAS 2021, https://doi.org/10.1073/pnas.2022562118

#genom #editierung #crispr #gene #genschere #mutation #gentechnik #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Genetik Molekulare Medizin Onkologie Pharmakologie Wissenschaft

„Durchbruch“ ins Zellinnere

Unser Zellinneres ist aus gutem Grund durch eine Zellmembran vor unerwünschten Besuchern geschützt. Aus pharmakologischer Sicht ist dieser Schutz jedoch ein lästiges Hindernis, da große Proteine oder Antikörper nur schwer bis gar nicht ins sogenannte Zytoplasma gelangen. Die meisten Medikamente umgehen diese Barriere, indem sie an der Zelloberfläche ansetzen und ihre Wirkung über eine Reihe von weiteren Proteinen entfalten.

Um große Biomoleküle wie Proteine oder Antikörper direkt in die Zelle zu bekommen, wird seit mehr als zwei Jahrzehnten an zellpenetrierenden Peptiden geforscht. Dabei wird ein großes Molekül mit einem chemischen „Schuhlöffel“ verknüpft, der das Eindringen in die Zelle erleichtern soll. Ein Konzept, das bei großer „Fracht“ bisher aber scheiterte. Jetzt präsentieren Forscher vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin und der TU Darmstadt eine neue Lösung. Ihr Trick: Sie verknüpfen nicht nur das zu transportierende Molekül mit den zellpenetrierenden Peptiden, sondern auch die Zelloberfläche.

Wie Experimente an lebenden Zellen zeigen, wird dadurch die intrazelluläre Aufnahme von funktionalen Proteinen und Antikörpern erheblich verbessert. Diese passieren nicht nur mühelos die Zellmembran, sondern sind auch in der Zelle aktiv, ohne toxisch zu sein. Entscheidend ist auch, dass mit dem neuen Verfahren nur rund ein Zehntel der bisher verwendeten Substanz-Konzentrationen benötigt werden. Fazit des Studienleiters Anselm Schneider: ein „Durchbruch“ im wahrsten Sinne des Wortes.

Mit dieser neuen Methode könnten nun etwa Signalwege in einer Krebszelle gezielt beeinflusst oder fehlende Enzyme, zum Beispiel bei einer Erbkrankheit ersetzt werden. Gene-Editing, also eine genetische Manipulation von Zellen, könnte ebenfalls auf diesem Weg erfolgen.

Referenz:
FMP Berlin, TU Darmstadt
Cellular uptake of Large Biomolecules Enabled by Cell-surface-reactive Cell-penetrating Peptide Additives, Nature Chemistry 2021,
https://www.nature.com/articles/s41557-021-00661-x

#pharmakologie #molekültransport #zellmembran #antikörper #proteine #intrazellulär #medizin #medimpressions

Fotocredit: Canva

Kategorien
Diagnostik Epigenetik Genetik Molekulare Medizin Onkologie Wissenschaft

Deep Learning identifiziert 165 neue Krebsgene

Wenn Krebszellen außer Kontrolle geraten, sind in aller Regel DNA-Veränderungen in Krebsgenen daran schuld. Doch einige Krebsarten entstehen bereits bei nur sehr wenigen mutierten Genen. In diesen Fällen führen andere, wenig verstandene Ursachen zur Erkrankung.

Ein Forschungsteam vom Max-Planck-Institut für molekulare Genetik in Berlin und das Institut für Computational Biology des Helmholtz Zentrums München hat nun einen neuen Algorithmus entwickelt, der mit Hilfe von maschinellem Lernen 165 zuvor unbekannte Krebsgene identifizierte. Von diesen Genen sind längst nicht alle mutiert – die neu entdeckten Gene stehen jedoch alle in engem Austausch mit bereits bekannten Krebsgenen. Überdies sind sie überlebenswichtig für Tumorzellen, wie sich im Zellkulturexperiment herausstellte.

Das auf den Namen „EMOGI“ getaufte Programm kann auch erklären, welche zellulären Zusammenhänge jedes der identifizierten Gene zu einem Krebsgen machen. Dazu kombiniert das Programm zehntausende Datensätze aus Patientenproben. Diese enthalten neben Sequenzdaten mit Mutationen auch Informationen über DNA-Methylierungen, die Aktivität einzelner Gene und Interaktionen von Proteinen, die an zellulären Signalwegen beteiligt sind. Ein Deep-Learning-Algorithmus erkennt in diesen Daten die Muster und molekularen Gesetzmäßigkeiten, die zu Krebs führen. So wurden z. B. Gene identifiziert, deren Sequenz bei Krebs meist unverändert bleibt, die jedoch trotzdem für den Tumor unverzichtbar sind, weil sie beispielsweise die Energiezufuhr regulieren.
In der Klinik helfen diese Daten für Erkrankte die jeweils beste Therapie zu finden – also die wirksamste Behandlung mit den wenigsten Nebenwirkungen. Zudem lässt sich anhand der molekularen Eigenschaften eine Krebserkrankung schon frühzeitig erkennen.

Referenz:
MPIMG Berlin, Helmholtz Zentrum München
Integration of Multi-Omics Data with Graph Convolutional Networks to Identify New Cancer Genes and their Associated Molecular Mechanisms, Nature Mach Intell 2021;

https://www.nature.com/articles/s42256-021-00325-y

#krebs #krebsgene #deeplearning #tumor #methylierung #mutation #multiomics #medizin #medimpressions

Fotocredit: Canva

Kategorien
Entwicklungsbiologie Genetik Infektiologie Molekulare Medizin Neurowissenschaften Onkologie Virologie Wissenschaft

Wie Viren das wachsende Gehirn schädigen

Viren befallen unterschiedlichste Gewebestrukturen in unserem Körper und nutzen spezielle Proteine wie Türöffner, um ins Innere der Zelle zu gelangen und diese dann für ihre eigene Fortpflanzung zu „hacken“: Die Zelle produziert fortan nur noch andere Viren und keine eigenen Zellnachkommen. Während der menschlichen Gehirnentwicklung sind manche Vireninfektionen daher besonders kritisch – die Folge können schwere Fehlbildungen im Gehirn sein. Für werdende Mütter ist daher besondere Vorsicht vor Infektionserregern wie Toxoplasma gondii, Röteln-Viren, CMV, ZIKA-Viren und Herpes-simplex-Viren (HSV) geboten.

Bislang war es nicht möglich, den Einfluss bestimmter Viren auf die Gehirnentwicklung systematisch am Menschen zu untersuchen. Eine einzigartige Technologie, die weltweit erstmals am Institut für Molekulare Biotechnologie in Wien entwickelt wurde, erlaubt es nun, den Einfluss von Infektionen auf die menschliche Gehirnentwicklung neu zu beleuchten und innovative Therapien zu testen. Dies funktioniert an Gehirn-Organoiden, die aus menschlichen Stammzellen herangezüchtet werden. Diese können etwa aus einem kleinen Stück Haut oder einer Blutprobe gewonnen werden. Untersucht wurden aktuell ein Virenbefall durch ZIKA und das Herpes Simplex Virus. Diese wurden in der Petrischale „infiziert“, um den Einfluss der Erreger auf die Gehirnentwicklung zu studieren.

Die Organoide bieten auch ein ideales Modellsystem, um die Entwicklung neuer Therapien gegen Viren, die das menschliche Gehirn befallen, anzutreiben. Im Labor gelang es ForscherInnen bereits, Herpes infizierte Gehirn-Organoide durch die Gabe von Interferon Typ 1 vor Fehlbildungen zu schützen. In Zukunft soll eine Vielzahl weiterer Substanzen getestet werden und das Modell auch in der Krebsforschung eingesetzt werden.

Referenz:
IMBA Wien
Organoid modeling of Zika and Herpes Simplex Virus 1 infections reveals virus-specific responses leading to microcephaly; Cell Stem Cell 2021, https://www.sciencedirect.com/science/article/abs/pii/S1934590921001107

#viren #schwangerschaft #gehirnentwicklung #testsystem #organoid #herpes #interferon #medizin #medimpressions

Fotocredit: Canva

Kategorien
Diagnostik Infektiologie Intensivmedizin Interne Medizin Molekulare Medizin Technologie Virologie Wissenschaft

„Bakterienfressende“ Viren gegen multiresistente Keime

Bakteriophagen sind spezielle Viren, die ausschließlich Bakterien angreifen und deshalb eine Alternative zu Antibiotika darstellen können. Ein Team aus österreichischen, deutschen und schweizerischen Forschern konnte nun erstmals zeigen, dass gezielt herangezüchtete Phagen deutlich besser gegen multiresistente Keime wirken als bekannte Wildtypen (die ursprüngliche Form der Bakterien). 

Eine Therapie mit „bakterienfressenden“ Viren gilt schon seit einiger Zeit als aussichtsreiche Option zur Therapie von schwer zu behandelnden Infektionen mit multiresistenten Bakterien. Sie wirken viel gezielter auf die krankheitsverursachende Bakterienspezies und können typische Resistenzmechanismen von Bakterien umgehen. Die gezüchteten Phagen sind aber derart exakt an ihr Wirtsbakterium angepasst, dass selbst eng verwandte Stämme der gleichen Bakterienart nicht mehr von ihnen angegriffen werden und sie dadurch nur eine geringe Gesamtwirkung zeigen. Mischt man diese mit natürlich vorkommenden Phagen, wirkt die Mixtur zwar besser, aber im besten Fallt oft nur bei der Hälfte aller Zielbakterien.

Ein österreichisches Unternehmen kreuzte nun verschiedene Phagen und selektierte diejenigen, die ein möglichst breites Spektrum an Bakterienstämmen angreifen konnten. Eine Mischung der so gezüchteten Phagen wurde nun an 110 Staphylokokken-Stämmen getestet (43 Prozent von ihnen waren bereits multiresistente MRSA-Varianten).
Das Resultat nach der Behandlung mit den gezüchteten Phagen: Bei 101 der 110 Bakterienstämme wurde das Wachstum erfolgreich unterbunden. Damit könnte die neue Therapie bei manchen Krankheitsbildern als ernsthafte Alternative zur antibiotischen Behandlung von MRSA-Infektionen in Betracht gezogen werden, meinen die Forscher.

Referenz:
Friedrich-Schiller-Universität Jena, Université de Lausanne, Universität Dresden
ε2-Phages Are Naturally Bred and Have a Vastly Improved Host Range in Staphylococcus aureus over Wild Type Phages. Pharmaceuticals 2021;  https://www.mdpi.com/1424-8247/14/4/325

#multiresistenz #mrsa #antibiotika #phagen #staphylokokken #bakterien #infektion #medizin #medimpressions

Fotocredit: Canva

Kategorien
Epigenetik Genetik Molekulare Medizin Neurologie Onkologie Personalisierte Medizin Schmerzmedizin Wissenschaft

Mittels Gentherapie gegen Schmerzen?

Weltweit leiden Millionen Menschen an chronischen Schmerzen, denen nur noch mit Opioiden geholfen werden kann. Diese Schmerzmittel können jedoch gravierende Nebenwirkungen haben: Sie machen süchtig und fördern im schlimmsten Fall sogar das Schmerzgedächtnis.

Geht es nach den Ergebnissen einer amerikanischen Studie, könnte Schmerzpatienten künftig mittels Gentherapie geholfen werden. In ihrem Versuch blockierten die Forscher mithilfe der Genschere CRISPR/Cas9 vorübergehend ein Schmerzgen bei Mäusen. Dies dämpfte das Schmerzempfinden und sorgte für eine langanhaltende Linderung der Beschwerden. Blockiert wurde dabei eine seltene Mutation (NaV1.7), die dazu führt, dass Betroffene keinen Schmerz empfinden können. „Indem wir auf dieses Gen zielen, verändern wir den Schmerz-Phänotyp,“ so die Untersuchungsleiterin Ana Moreno von der University of California. Von Vorteil ist dabei, dass das Gen nur am Schmerz selbst beteiligt ist. Die Manipulation zeigte keine Auswirkungen auf sonstige sensorische und motorische Fähigkeiten.
Menschen mit einer entsprechenden Mutation, fehlt Schmerz als wichtige Warnfunktion des Körpers. Um diese wichtige Funktion jederzeit wieder herstellen zu können, wurde daher auf eine reversible Variante gesetzt, so dass das Schmerzempfinden bei Bedarf auch wieder „eingeschalten“ werden kann.

Die gleichen Ergebnisse erzielten die Forscher, wenn sie das entsprechende Gen nicht mit der Genschere blockierten, sondern mit einer älteren Gen-Editing-Technik, bei der sogenannte Zinkfingerproteine dazu eingesetzt werden, um die Ablesung der Gene zu blockieren.
Im nächsten Schritt sollen beide Ansätze nun für einen klinischen Einsatz am Menschen – etwa bei Krebserkrankungen, Arthritis oder Ischias – optimiert werden.

Referenzen:
University of California, San Diego
Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice; Science Translational Medicine 2021;  https://stm.sciencemag.org/content/13/584/eaay9056

#schmerz #schmerzgen #gentherapie #epigenetik #schmerzblockade #genediting #crispr #medizin #medimpressions

Fotocredit: Canva

Kategorien
Diagnostik Digital Health Molekulare Medizin Onkologie Personalisierte Medizin Technologie Wissenschaft

Brustkrebstherapie: Mathematik als Entscheidungshilfe

Die präzise Therapiewahl bei Brustkrebs hängt entscheidend vom Status der Hormonrezeptoren (für Östrogen und Progesteron) ab. Deren übliche Bestimmung mittels Immunohistochemie (IHC) hat eine gewisse Fehlerrate, die durch Hinzunahme von Genomdaten gesenkt werden kann. Daraus ergeben sich jedoch auch widersprüchliche Befunde, die die Wahl der richtigen Therapie erschweren. In diesen Fällen könnten mathematische Modelle die Entscheidungsfindung deutlich verbessern, ergab eine Studie der Universität Wien an über 3700 Patientinnen.

Die Methodik ist weit über Brustkrebs hinaus anwendbar, und kann überall, wo aus zahlreichen Befunden gleichzeitig Folgerungen zu ziehen sind, eingesetzt werden. Wolfgang Schreiner (CeMSIIS) vergleicht das System mit selbstfahrenden Autos: „Diese prüfen durch Sensoren, ob freie Fahrt möglich ist. Dabei kann ein Sensor ein Hindernis wahrnehmen und eine Notbremsung anfordern. Ein anderer Sensor erkennt keine Gefahr. Was ist dann zu tun? Es gibt zwei mögliche Fehlentscheidungen, und jede ist auf andere Weise riskant: Wird nicht gebremst, passiert ein möglicherweise schwerer Unfall. Bremst der Wagen unnötig, riskiert man einen Auffahrunfall.“ Analog dazu ist die Situation bei der Therapiewahl für Krebspatientinnen, die auf Status der Hormonrezeptoren abgestimmt wird. Eine falsche Entscheidung (Hormon- oder Chemotherapie) würde zu vermeidbaren Nebenwirken führen, im schlimmsten Fall zum Vorenthalten einer lebensrettenden Therapie.

Die Stärke des mathematischen Modells besteht darin, dass sie nicht nur einen einzigen Faktor, nämlich die Wahrscheinlichkeit eines Ereignisses (z.B. Rezeptor-positiv), sondern auch die Wahrscheinlichkeiten für andere Möglichkeiten (möglicherweise positiv) und (sicher nicht Rezeptor-positiv) mitberechnet. Das Modell hat den Vorteil, dass es „selbst merkt,“ wenn es unsicher ist und liefert dann das Ergebnis „unentscheidbar“. Eine wichtige Information für den Arzt.

Referenz:
MedUni Wien
Decision theory for precision therapy of breast cancer, Sci Rep 2021, 11:4233; https://www.nature.com/articles/s41598-021-82418-7

#brustkrebs #entscheidungstheorie #rezeptor #therapie #diagnose #ihc #medizin #medimpressions

Fotocredit: Canva

Kategorien
Molekulare Medizin Neurologie Pädiatrie Wissenschaft

Neuroblastom: Welcher Faktor begünstigt Rückfälle?

Neuroblastome sind nach Hirntumoren die häufigsten soliden Tumoren bei Kindern und entstehen aus unreifen Vorläuferzellen des Nervensystems. In einigen Fällen bilden sich Neuroblastome ohne jegliche Therapie komplett zurück. Bei etwa der Hälfte der Patienten kann jedoch auch eine hochintensive Therapie das Wachstum nicht verhindern.

Bösartige Neuroblastome nutzen einen Trick, um unendlich teilungsaktiv zu bleiben: Sie verlängern ihre Chromosomenenden (Telomere), so dass die Zellen quasi „unsterblich“ werden. Auf molekularer Ebene machen Krebszellen das auf zwei Wegen, sie überaktivieren das Enzym Telomerase oder sie verlängern die Chromosomenenden durch Neuanordnung ihrer Telomerabschnitte (alternativer Mechanismus). In beiden Fällen haben die jungen Patienten eine schlechte Prognose.

Das bestätigten auch die Daten von 760 Neuroblastom-Patienten einer eben publizierten Studie. Sie zeigt, dass bei fast der Hälfte der Patienten nicht die Überaktivierung der Telomerase, sondern der alternative Mechanismus für die Telomerverlängerung verantwortlich ist. Die Wissenschaftler untersuchten auch erstmals, welche molekularen Prozesse diesen speziellen Verlängerungsmechanismus begünstigen.

Die Erkenntnisse daraus könnte man nutzen, um bessere Therapien zu entwickeln. Bisher werden die jungen Patienten alle mit den gleichen Chemotherapie-Protokollen behandelt. Diese Therapien greifen vor allem schnell wachsende Krebszellen an. Krebszellen mit dem alternativen Mechanismus wachsen aber eher langsam, sind extrem widerstandsfähig und kehren wieder. Im nächsten Schritt wird nun daran gearbeitet, eine spezifische Therapie für diese Tumoren zu entwickeln, die vielleicht auch bei anderen Krebsarten, die diesen Telomer-Verlängerungsmechanismus nutzen, zum Einsatz kommen könnte.

Referenz:
DKFZ, KiTZ, Heidelberg; Universität HD
Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome; Nature Communications 2021; https://www.nature.com/articles/s41467-021-21247-8

#neuroblastom #tumor #kinder #therapie #telomere #krebszellen # #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Immunologie Molekulare Medizin Onkologie Wissenschaft

Individuelle Krebstherapien gegen Chemokinrezeptoren

CXCR4 ist ein wichtiger Oberflächenrezeptor auf Immun- und Krebszellen. Wenn dieser Chemokinrezeptor in großer Zahl auf Krebszellen zu finden ist, sorgt er unter anderem dafür, dass diese wandern und Metastasen bilden können. Auch bei jeder Entzündung ist CXCR4 mit von der Partie. Der Entzündungsherd setzt Botenstoffe aus der Klasse der Chemokine frei. Diese sorgen in den Lymphknoten dafür, dass Immunzellen sehr viele CXCR4-Antennen ausbilden, sodass Immunzellen den Entzündungsherd finden und dahin wandern können.

Der molekulare Rezeptor hat in den vergangenen Jahren für eine hitzige Debatte unter Experten gesorgt, weil sein Beziehungsstatus Rätsel aufgab. Tritt er als Single auf oder doch als Paar? Die Antwort liefern Untersuchungen des Forscherteams um Ali Isbilir des Max-Delbrück-Centrums für Molekulare Medizin. Der Rezeptor liebt es nämlich unverbindlich: er liegt mal als Single (Monomer), mal als Paar (Dimer) vor.

Wichtig ist diese Erkenntnis nicht nur für die Grundlagenforschung, sondern auch für die Pharmabranche. So konnten die Forscher zeigen, dass bestimmte Arzneien, die als CXCR4-Blocker wirken, eine Paarbildung unterdrücken können. Man nimmt an, dass die CXCR4-Paare schlecht für die Gesundheit sind. Dank einer neu entwickelten Fluoreszenzmethode können nun lebende Krebszellen direkt untersucht werden, so dass CXCR4-Blocker für Paare und Singles eingesetzt und geprüft werden kann, welche wirksamer gegen Tumore sind. So könnten etwa spezifischere Krebsmedikamente mit weniger Nebenwirkungen entwickelt und Krebstherapien individuell und so wirksam als möglich zusammengestellt werden.

Referenz:
MDC Berlin; Helmholtz Gemeinschaft

Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists, PNAS 2021, https://www.pnas.org/content/117/46/29144
Determination of G-protein-coupled receptor oligomerization by molecular brightness analyses in single cells; Nature Protocols 2021, https://www.nature.com/articles/s41596-020-00458-1

#krebs #krebstherapie #personalisiertemedizin #chemokin #rezeptor #onkologie #immunologie #medizin #medimpressions

Fotocredit: Canva