Kategorien
Gastroenterologie Immunologie Molekulare Medizin Onkologie Wissenschaft

Impfung gegen erblichen Darmkrebs

Bei den so genannten Mikrosatelliten-instabilen Krebsarten fehlt ein wichtiges zelluläres Reparatursystem, das normalerweise kleine Fehler im Erbgut korrigiert. Bleiben solche DNA-Defekte unkorrigiert, so kann die gesamte Bauanleitung für bestimmte Proteine aus dem Takt geraten. Die Zellen bilden dann neuartige Eiweißstrukturen, so genannte Neoantigene, die vom Immunsystem oft als fremd erkannt werden. Mikrosatelliten-instabile (MSI) Tumoren können spontan entstehen oder als Folge einer erblichen Veranlagung, dem Lynch-Syndrom. Etwa ein Viertel der MSI-Darmtumoren werden durch das Lynch-Syndrom verursacht.

Ein Team des Universitätsklinikums Heidelberg konnte in langjährigen Vorarbeiten zeigen, dass bei vielen Patienten mit Lynch-Syndrom identische Mutationen und damit auch identische Neoantigene im Tumor auftreten. Sie prüften auch, ob die häufig vorkommenden Neoantigene in der Lage sind, als Schutzimpfung das Immunsystem gegen die Tumorzellen zu aktivieren und so zu verhindern, dass Krebs entsteht.

Tatsächlich zeigten die Forscher jetzt erstmals an einem Tiermodell, dass eine Schutzimpfung mit MSI-typischen Neoantigenen tatsächlich vor Krebs schützen kann. Das Team untersuchte dazu einen Mausstamm, der in Folge eines Defekts der DNA-Reparaturenzyme Darmkrebs entwickelt.
Die geimpften „Lynch“-Mäuse überlebten im Durchschnitt 351 Tage, ungeimpfte Tiere dagegen nur 263 Tage. Auch die Tumormasse fiel deutlich geringer aus. Erhielten die Mäuse zusätzlich zur Impfung den Entzündungshemmer Naproxen, so steigerte dies den präventiven Effekt der Impfung. Die Forscher stellten auch fest, dass das Immunsystem bei ungeimpften Mäusen gegen die Neoantigene aktiv ist, die Impfung verstärkte also die vorhandene natürliche Immunreaktion gegen die Krebszellen.

Referenz:
DKFZ Heidelberg, Cornell Medical College, NY
Recurrent frameshift neoantigen vaccine elicits protective immunity with reduced tumor burden and improved overall survival in a Lynch syndrome mouse model, Gastroenterology 2021; https://www.gastrojournal.org/article/S0016-5085(21)03187-5

#lynchtumor #gastroenterologie #darmkrebs #neoantigene #impfung #mausmodell #medizin #medimpressions

Fotocredit: Canva

Kategorien
Genetik Leben Molekulare Medizin Neurologie Wissenschaft

Die „gute“ Seite von Morbus Huntington

Die Huntington-Krankheit (früher als Veitstanz bekannt) ist eine seltene, genetisch bedingte Gehirnerkrankung, die meist um das 40. Lebensjahr herum ausbricht. Sie geht mit schweren Bewegungseinschränkungen, kognitiven Beeinträchtigungen (z. Bsp. früher Demenz) und Verhaltensauffälligkeiten einher. Dass die furchtbare Erkrankung auch eine „gute“ Seite hat, darauf weist nun ein deutsch-amerikanisches Forscherteam hin.

Üblicherweise wird Morbus Huntington mit einer erhöhten Anzahl von Wiederholungen der Basenabfolge CAG im Huntington-Gen in Verbindung gebracht. „Solche Wiederholungen kommen in vielen Genen vor und es gibt die Hypothese, dass Ihnen eine entscheidende Rolle in der Evolution zukommen könnte“, so Carsten Saft von der Ruhr-Universität Bochum. Ihm war bereits aufgefallen, dass viele der von ihm behandelten Huntington-Patienten vor dem Ausbruch ihrer Erkrankung wichtige Positionen innehatten, Firmen gründeten, sportlich erfolgreich waren oder mehrere Sprachen gesprochen hatten.

Tatsächlich konnte das Forschungsteam jetzt in einer Untersuchung an 21 000 Menschen, darunter Mutationsträger ohne Beschwerden sowie Kontrollpersonen aus den betroffenen Familien, nachweisen, dass die Anzahl der CAG-Wiederholungen signifikant mit der Leistung bei verschiedenen kognitiven Aufgaben korrelierte. Mit den Tests wurden exekutive Funktionen und Aufmerksamkeit erfasst. Menschen mit mehr CAG-Wiederholungen schnitten durchschnittlich besser ab. Ein Indiz dafür, dass der Gendefekt, der zu dieser schrecklichen Krankheit führt, auch eine positive Rolle haben könnte.

Die Ergebnisse sind auch für sogenannte Huntingtin-Lowering-Therapien von Bedeutung, die derzeit in Studien untersucht werden. Mithilfe verschiedener Substanzen wird dabei versucht, die Menge des Huntingtin-Proteins im Gehirn zu reduzieren.

Referenz:
Ruhr-Universität Bochum, University of Iowa
Association of CAG repeat length in the Huntington gene with cognitive performance in young adults, Neurology 2021, https://n.neurology.org/content/96/19/e2407.long

#huntington #gendefekt #gehirn #kognitiveleistung #cag #intelligenz #medizin #medimpressions

Fotocredit: Canva

Kategorien
Genetik Molekulare Medizin Onkologie Tumorbiologie Wissenschaft

Frühe Tumorzellen: klein, aber schon sehr böse

Ein internationales Forscherteam hat ein innovatives genetisches Modell entwickelt, mit dem bereits die ersten Schritte erkannt werden können, die zur Krebsentwicklung in Mäusen führen. Diese sind nur schwer nachweisbar, da der Prozess innerhalb einer einzigen Zelle beginnt. In dieser kritischen Phase erwirbt eine sogenannte Keimzelle eine krebsfördernde Mutation, die als „erster onkogener Hit“ bezeichnet wird.

„Durch eine spezielle tief-zielende DNA-Sequenzierung haben wir festgestellt, dass krebsassoziierte Mutationen bereits in normalem Gewebe vorhanden sind, was sehr beängstigend ist“, beschreibt IMBA-Forschungsleiter Bon-Kyoung Koo diesen Wendepunkt in der Krebsentwicklung. Da die meisten Krebsarten ihren Ursprung im Epithel, der obersten Zellschicht des Haut- und Schleimhautgewebes haben, bauten die Forscher ein Modell („Red2Onco“), um die Auswirkungen der ersten onkogenen Veränderungen im Mausdarm zu untersuchen. Anhand dieses Modells zeigte sich, dass mutierte Zellen eine feindliche Umgebung für ihre benachbarten nicht-mutanten Zellen schaffen und die normale Stammzellumgebung im Darmgewebe der Maus massiv deregulieren. Wobei die Forscher zu ihrer Überraschung herausfanden, dass sogar im Fall eines ersten onkogenen Treffers die mutierte prä-onkogene Zelle, oder Keimzelle, einen negativen Einfluss auf ihre Nachbarn ausübt. Dieser Prozess erhöht die Chance auf weitere onkogene Treffer, die wiederum zu Krebs führen können“, erklärt Coautor Benjamin Simons, University of Cambridge. Untersucht wurden die Auswirkungen von zwei separaten ersten onkogenen Hits (KRAS bzw. PI3K).

Die Autoren konnten aber auch belegen, dass die Unterdrückung von Signalen, die von der onkogenen Mutante ausgehen, den negativen Einfluss auf die normalen Stammzellen lindert, was den Weg für künftige Interventionen öffnen könnte.

Referenz:
IMBA Vienna, University of Cambridge
Tracing oncogene-driven remodelling of the intestinal stem cell niche, Nature 2021, https://www.nature.com/articles/s41586-021-03605-0

#tumor #krebs #onkogene #firsthit #malignität #zellveraenderung #darmzellen #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Genetik Interne Medizin Kardiologie Molekulare Medizin Personalisierte Medizin Wissenschaft

Gen-Editierung senkt Cholesterinwerte dauerhaft

Ein internationales Forschungsteam unter Leitung der Universität Zürich (UZH) konnte zeigen, dass hohe LDL-Cholesterinwerte, die zu den größten Risikofaktoren von Herz-, Kreislauferkrankungen zählen, mit einer neuartigen präzisen Methode der Gen-Editierung dauerhaft gesenkt werden können. Das Team schleuste eine einzelne Punktmutation in das Gen ein, welches das Enzym PCSK9 kodiert. Dieses Protein ist an der Aufnahme von Cholesterin aus dem Blut in die Zellen beteiligt.

Die verwendete Technologie der Gen-Editierung basiert auf sogenannten Basen-Editoren. Diese Proteine können im DNA-Molekül einen einzelnen „Buchstaben“ eines Gens auswechseln. Ein Adenin (A) wird so zum Beispiel zu einem Guanin (G).
Um das Werkzeug kontrolliert in die Leber zu platzieren, adaptierten die Forschenden die RNA-Technologie, die in COVID-19-Impfstoffen verwendet wird. Anstatt jedoch eine RNA, die für das Spike-Protein von SARS-CoV2 kodiert, in Lipid-Nanopartikel einzuhüllen, taten sie dies mit einer RNA, die für den Adenin-Basen-Editoren kodiert.
Die Verbindungen aus RNA und Lipid-Nanopartikeln wurden zwei Tierarten intravenös verabreicht, was zur Aufnahme und einer vorübergehenden Produktion des Basen-Editor-Werkzeugs in der Leber führte. Bei Mäusen konnten so bis zu zwei Drittel der PCSK9-Gene dauerhaft verändert werden, bei Makaken rund ein Drittel. In beiden Fällen führte dies zu einer deutlichen Senkung des LDL-Cholesterinspiegels.

Mit dieser präzisen und effizienten Methode eröffnen sich neue Therapieperspektiven für Patienten mit familiärer Hypercholesterinämie, einer vererbten Form von hohen Cholesterinwerten. Da etwa 30 Prozent aller erblichen, krankmachenden Mutationen von einzelnen fehlgeleiteten Basen verursacht werden, könnten sich künftig auch Störungen des Aminosäuren-Haushalts oder des Harnstoffzyklus auf diesem Weg behandeln lassen.

Referenz:
Universität Zürich
In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels, Nature Biotech 2021; https://www.nature.com/articles/s41587-021-00933-4

#geneditierung #cholesterin #basentausch #hypercholesterinaemie #mutation #enzym #rna #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Digital Health Genetik Molekulare Medizin Technologie Wissenschaft

Computerspiele für Forscher

Je größer und umfassender Netzwerke sind, desto schwieriger wird auch ihre Darstellung auf dem Bildschirm. Dies betrifft auch die Interaktion verschiedener Proteinkomplexe im menschlichen Körper. Der Netzwerkwissenschaftler Jörg Menche und seine Forschungsgruppe am CeMM Forschungszentrum für Molekulare Medizin entwickelten nun eine Virtual Reality-Plattform, die es ermöglicht, riesige Datenmengen und deren komplexes Zusammenspiel auf eine einzigartige, intuitive Weise zu untersuchen. Dabei bedienten sie sich der Technologie, die normalerweise in der Entwicklung von 3-D-Computerspielen genutzt wird.

Der menschliche Körper stellt mit seinen rund 20.000 Proteinen, die im menschlichen Genom codiert sind und miteinander interagieren, ein riesiges komplexes Netzwerk dar. Stellt man die Protein-Interaktionen dar, entsteht ein kaum darstellbares Bild aus rund 18.000 Punkten – Proteinen – und rund 300.000 Strichen zwischen diesen Punkten.
Um dieses Bild „lesbar“ zu machen, schafften es die ForscherInnen erstmals, die Gesamtheit der Proteininteraktion sichtbar zu machen, um das riesige und komplexe Netzwerk interaktiv erkunden zu können.

Die 3-dimensionale Darstellung kann insbesondere bei der Identifikation seltener Gendefekte wichtig und entscheidend für therapeutische Maßnahmen sein. „Unsere Studie stellt einerseits einen wichtigen „Proof of concept“ unserer VR-Plattform dar, andererseits zeigt sie unmittelbar das enorme Potenzial der Visualisierung molekularer Netzwerke“, so Projektleiter Menche. „Gerade bei seltenen Erkrankungen, schweren Immunerkrankungen, können Proteinkomplexe, die mit spezifischen klinischen Symptomen assoziiert werden, genauer analysiert werden, um Hypothesen über ihre jeweiligen pathobiologischen Mechanismen zu entwickeln. Dies erleichtert die Annäherung an Erkrankungsursachen sowie infolge die Suche nach gezielten therapeutischen Maßnahmen.“

Referenz:
CeMM, St. Anna Kinderkrebsforschung Wien
VRNetzer: A Virtual Reality Network Analysis Platform, Nature Communications 2021; https://www.nature.com/articles/s41467-021-22570-w

#virtualreality #forschung #proteine #interaktionen #darstellung #3D #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Genetik Molekulare Medizin Onkologie Tumorbiologie Virologie Wissenschaft

Tiere mit eingebauter Genschere

Gentechnisch veränderte Tiere liefern wichtige Erkenntnisse über die molekularen Grundlagen von Gesundheit und Krankheit. Die Forschung hat sich hauptsächlich auf gentechnisch veränderte Mäuse konzentriert, obwohl andere Spezies, wie etwa Schweine, der menschlichen Physiologie ähnlicher sind.
ForscherInnen der Technischen Universität München (TUM) zeigen jetzt einen Weg auf, wie molekulare Mechanismen von Krankheitsresistenzen oder biomedizinische Fragestellungen im Nutztier effizient untersucht werden können: In der Grundlagen- und biomedizinischen Forschung können die Forschenden jetzt Gen-Mutationen gezielt in ein Wunschorgan einbringen oder auch bestehende Gene korrigieren, ohne für jedes Ziel-Gen neue Tiermodelle erzeugen zu müssen. Dies reduziert auch die Anzahl an Versuchstieren.

Ermöglicht wurde dies durch den Einbau des richtigen Werkzeugs, der „Genschere“ CRISPR/Cas9, die dauerhaft in den Organen von zwei Tierspezies – Schweinen und Hühnern – eingebracht wurde, um die Informationen der DNA punktgenau umzuschreiben zu können. Gene können damit inaktiviert oder gezielt modifiziert werden. „Es müssen also nur noch die leitenden RNAs eingebracht werden, um Tiere zu bekommen, die bestimmte genetische Eigenschaften haben“, so Mitautor Benjamin Schusser (TUM).

Besonders nützlich sind die von den Forschenden erzeugten gesunden Hühner und Schweine im Bereich der biomedizinischen und landwirtschaftlichen Forschung. So werden Schweine gerne als Krankheitsmodelle in der Krebsforschung eingesetzt, da ihre Anatomie und Physiologie dem Menschen viel mehr ähnelt als die der Maus. Der Mechanismus des CRISPR/Cas9 Systems kann außerdem zur Bekämpfung von Infektionen mit DNA-Viren nützlich sein. „Erste Arbeiten in Zellkulturen zeigten, dass das für das Geflügel-Herpesvirus schon funktioniert“, so Schusser.

Referenz:
TU München
Cas9-expressing chickens and pigs as resources for genome editing in livestock, PNAS 2021, https://doi.org/10.1073/pnas.2022562118

#genom #editierung #crispr #gene #genschere #mutation #gentechnik #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Genetik Molekulare Medizin Onkologie Pharmakologie Wissenschaft

„Durchbruch“ ins Zellinnere

Unser Zellinneres ist aus gutem Grund durch eine Zellmembran vor unerwünschten Besuchern geschützt. Aus pharmakologischer Sicht ist dieser Schutz jedoch ein lästiges Hindernis, da große Proteine oder Antikörper nur schwer bis gar nicht ins sogenannte Zytoplasma gelangen. Die meisten Medikamente umgehen diese Barriere, indem sie an der Zelloberfläche ansetzen und ihre Wirkung über eine Reihe von weiteren Proteinen entfalten.

Um große Biomoleküle wie Proteine oder Antikörper direkt in die Zelle zu bekommen, wird seit mehr als zwei Jahrzehnten an zellpenetrierenden Peptiden geforscht. Dabei wird ein großes Molekül mit einem chemischen „Schuhlöffel“ verknüpft, der das Eindringen in die Zelle erleichtern soll. Ein Konzept, das bei großer „Fracht“ bisher aber scheiterte. Jetzt präsentieren Forscher vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin und der TU Darmstadt eine neue Lösung. Ihr Trick: Sie verknüpfen nicht nur das zu transportierende Molekül mit den zellpenetrierenden Peptiden, sondern auch die Zelloberfläche.

Wie Experimente an lebenden Zellen zeigen, wird dadurch die intrazelluläre Aufnahme von funktionalen Proteinen und Antikörpern erheblich verbessert. Diese passieren nicht nur mühelos die Zellmembran, sondern sind auch in der Zelle aktiv, ohne toxisch zu sein. Entscheidend ist auch, dass mit dem neuen Verfahren nur rund ein Zehntel der bisher verwendeten Substanz-Konzentrationen benötigt werden. Fazit des Studienleiters Anselm Schneider: ein „Durchbruch“ im wahrsten Sinne des Wortes.

Mit dieser neuen Methode könnten nun etwa Signalwege in einer Krebszelle gezielt beeinflusst oder fehlende Enzyme, zum Beispiel bei einer Erbkrankheit ersetzt werden. Gene-Editing, also eine genetische Manipulation von Zellen, könnte ebenfalls auf diesem Weg erfolgen.

Referenz:
FMP Berlin, TU Darmstadt
Cellular uptake of Large Biomolecules Enabled by Cell-surface-reactive Cell-penetrating Peptide Additives, Nature Chemistry 2021,
https://www.nature.com/articles/s41557-021-00661-x

#pharmakologie #molekültransport #zellmembran #antikörper #proteine #intrazellulär #medizin #medimpressions

Fotocredit: Canva

Kategorien
Diagnostik Epigenetik Genetik Molekulare Medizin Onkologie Wissenschaft

Deep Learning identifiziert 165 neue Krebsgene

Wenn Krebszellen außer Kontrolle geraten, sind in aller Regel DNA-Veränderungen in Krebsgenen daran schuld. Doch einige Krebsarten entstehen bereits bei nur sehr wenigen mutierten Genen. In diesen Fällen führen andere, wenig verstandene Ursachen zur Erkrankung.

Ein Forschungsteam vom Max-Planck-Institut für molekulare Genetik in Berlin und das Institut für Computational Biology des Helmholtz Zentrums München hat nun einen neuen Algorithmus entwickelt, der mit Hilfe von maschinellem Lernen 165 zuvor unbekannte Krebsgene identifizierte. Von diesen Genen sind längst nicht alle mutiert – die neu entdeckten Gene stehen jedoch alle in engem Austausch mit bereits bekannten Krebsgenen. Überdies sind sie überlebenswichtig für Tumorzellen, wie sich im Zellkulturexperiment herausstellte.

Das auf den Namen „EMOGI“ getaufte Programm kann auch erklären, welche zellulären Zusammenhänge jedes der identifizierten Gene zu einem Krebsgen machen. Dazu kombiniert das Programm zehntausende Datensätze aus Patientenproben. Diese enthalten neben Sequenzdaten mit Mutationen auch Informationen über DNA-Methylierungen, die Aktivität einzelner Gene und Interaktionen von Proteinen, die an zellulären Signalwegen beteiligt sind. Ein Deep-Learning-Algorithmus erkennt in diesen Daten die Muster und molekularen Gesetzmäßigkeiten, die zu Krebs führen. So wurden z. B. Gene identifiziert, deren Sequenz bei Krebs meist unverändert bleibt, die jedoch trotzdem für den Tumor unverzichtbar sind, weil sie beispielsweise die Energiezufuhr regulieren.
In der Klinik helfen diese Daten für Erkrankte die jeweils beste Therapie zu finden – also die wirksamste Behandlung mit den wenigsten Nebenwirkungen. Zudem lässt sich anhand der molekularen Eigenschaften eine Krebserkrankung schon frühzeitig erkennen.

Referenz:
MPIMG Berlin, Helmholtz Zentrum München
Integration of Multi-Omics Data with Graph Convolutional Networks to Identify New Cancer Genes and their Associated Molecular Mechanisms, Nature Mach Intell 2021;

https://www.nature.com/articles/s42256-021-00325-y

#krebs #krebsgene #deeplearning #tumor #methylierung #mutation #multiomics #medizin #medimpressions

Fotocredit: Canva

Kategorien
Entwicklungsbiologie Genetik Infektiologie Molekulare Medizin Neurowissenschaften Onkologie Virologie Wissenschaft

Wie Viren das wachsende Gehirn schädigen

Viren befallen unterschiedlichste Gewebestrukturen in unserem Körper und nutzen spezielle Proteine wie Türöffner, um ins Innere der Zelle zu gelangen und diese dann für ihre eigene Fortpflanzung zu „hacken“: Die Zelle produziert fortan nur noch andere Viren und keine eigenen Zellnachkommen. Während der menschlichen Gehirnentwicklung sind manche Vireninfektionen daher besonders kritisch – die Folge können schwere Fehlbildungen im Gehirn sein. Für werdende Mütter ist daher besondere Vorsicht vor Infektionserregern wie Toxoplasma gondii, Röteln-Viren, CMV, ZIKA-Viren und Herpes-simplex-Viren (HSV) geboten.

Bislang war es nicht möglich, den Einfluss bestimmter Viren auf die Gehirnentwicklung systematisch am Menschen zu untersuchen. Eine einzigartige Technologie, die weltweit erstmals am Institut für Molekulare Biotechnologie in Wien entwickelt wurde, erlaubt es nun, den Einfluss von Infektionen auf die menschliche Gehirnentwicklung neu zu beleuchten und innovative Therapien zu testen. Dies funktioniert an Gehirn-Organoiden, die aus menschlichen Stammzellen herangezüchtet werden. Diese können etwa aus einem kleinen Stück Haut oder einer Blutprobe gewonnen werden. Untersucht wurden aktuell ein Virenbefall durch ZIKA und das Herpes Simplex Virus. Diese wurden in der Petrischale „infiziert“, um den Einfluss der Erreger auf die Gehirnentwicklung zu studieren.

Die Organoide bieten auch ein ideales Modellsystem, um die Entwicklung neuer Therapien gegen Viren, die das menschliche Gehirn befallen, anzutreiben. Im Labor gelang es ForscherInnen bereits, Herpes infizierte Gehirn-Organoide durch die Gabe von Interferon Typ 1 vor Fehlbildungen zu schützen. In Zukunft soll eine Vielzahl weiterer Substanzen getestet werden und das Modell auch in der Krebsforschung eingesetzt werden.

Referenz:
IMBA Wien
Organoid modeling of Zika and Herpes Simplex Virus 1 infections reveals virus-specific responses leading to microcephaly; Cell Stem Cell 2021, https://www.sciencedirect.com/science/article/abs/pii/S1934590921001107

#viren #schwangerschaft #gehirnentwicklung #testsystem #organoid #herpes #interferon #medizin #medimpressions

Fotocredit: Canva

Kategorien
Diagnostik Infektiologie Intensivmedizin Interne Medizin Molekulare Medizin Technologie Virologie Wissenschaft

„Bakterienfressende“ Viren gegen multiresistente Keime

Bakteriophagen sind spezielle Viren, die ausschließlich Bakterien angreifen und deshalb eine Alternative zu Antibiotika darstellen können. Ein Team aus österreichischen, deutschen und schweizerischen Forschern konnte nun erstmals zeigen, dass gezielt herangezüchtete Phagen deutlich besser gegen multiresistente Keime wirken als bekannte Wildtypen (die ursprüngliche Form der Bakterien). 

Eine Therapie mit „bakterienfressenden“ Viren gilt schon seit einiger Zeit als aussichtsreiche Option zur Therapie von schwer zu behandelnden Infektionen mit multiresistenten Bakterien. Sie wirken viel gezielter auf die krankheitsverursachende Bakterienspezies und können typische Resistenzmechanismen von Bakterien umgehen. Die gezüchteten Phagen sind aber derart exakt an ihr Wirtsbakterium angepasst, dass selbst eng verwandte Stämme der gleichen Bakterienart nicht mehr von ihnen angegriffen werden und sie dadurch nur eine geringe Gesamtwirkung zeigen. Mischt man diese mit natürlich vorkommenden Phagen, wirkt die Mixtur zwar besser, aber im besten Fallt oft nur bei der Hälfte aller Zielbakterien.

Ein österreichisches Unternehmen kreuzte nun verschiedene Phagen und selektierte diejenigen, die ein möglichst breites Spektrum an Bakterienstämmen angreifen konnten. Eine Mischung der so gezüchteten Phagen wurde nun an 110 Staphylokokken-Stämmen getestet (43 Prozent von ihnen waren bereits multiresistente MRSA-Varianten).
Das Resultat nach der Behandlung mit den gezüchteten Phagen: Bei 101 der 110 Bakterienstämme wurde das Wachstum erfolgreich unterbunden. Damit könnte die neue Therapie bei manchen Krankheitsbildern als ernsthafte Alternative zur antibiotischen Behandlung von MRSA-Infektionen in Betracht gezogen werden, meinen die Forscher.

Referenz:
Friedrich-Schiller-Universität Jena, Université de Lausanne, Universität Dresden
ε2-Phages Are Naturally Bred and Have a Vastly Improved Host Range in Staphylococcus aureus over Wild Type Phages. Pharmaceuticals 2021;  https://www.mdpi.com/1424-8247/14/4/325

#multiresistenz #mrsa #antibiotika #phagen #staphylokokken #bakterien #infektion #medizin #medimpressions

Fotocredit: Canva