Kategorien
Molekulare Medizin Neurologie Pädiatrie Wissenschaft

Neuroblastom: Welcher Faktor begünstigt Rückfälle?

Neuroblastome sind nach Hirntumoren die häufigsten soliden Tumoren bei Kindern und entstehen aus unreifen Vorläuferzellen des Nervensystems. In einigen Fällen bilden sich Neuroblastome ohne jegliche Therapie komplett zurück. Bei etwa der Hälfte der Patienten kann jedoch auch eine hochintensive Therapie das Wachstum nicht verhindern.

Bösartige Neuroblastome nutzen einen Trick, um unendlich teilungsaktiv zu bleiben: Sie verlängern ihre Chromosomenenden (Telomere), so dass die Zellen quasi „unsterblich“ werden. Auf molekularer Ebene machen Krebszellen das auf zwei Wegen, sie überaktivieren das Enzym Telomerase oder sie verlängern die Chromosomenenden durch Neuanordnung ihrer Telomerabschnitte (alternativer Mechanismus). In beiden Fällen haben die jungen Patienten eine schlechte Prognose.

Das bestätigten auch die Daten von 760 Neuroblastom-Patienten einer eben publizierten Studie. Sie zeigt, dass bei fast der Hälfte der Patienten nicht die Überaktivierung der Telomerase, sondern der alternative Mechanismus für die Telomerverlängerung verantwortlich ist. Die Wissenschaftler untersuchten auch erstmals, welche molekularen Prozesse diesen speziellen Verlängerungsmechanismus begünstigen.

Die Erkenntnisse daraus könnte man nutzen, um bessere Therapien zu entwickeln. Bisher werden die jungen Patienten alle mit den gleichen Chemotherapie-Protokollen behandelt. Diese Therapien greifen vor allem schnell wachsende Krebszellen an. Krebszellen mit dem alternativen Mechanismus wachsen aber eher langsam, sind extrem widerstandsfähig und kehren wieder. Im nächsten Schritt wird nun daran gearbeitet, eine spezifische Therapie für diese Tumoren zu entwickeln, die vielleicht auch bei anderen Krebsarten, die diesen Telomer-Verlängerungsmechanismus nutzen, zum Einsatz kommen könnte.

Referenz:
DKFZ, KiTZ, Heidelberg; Universität HD
Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome; Nature Communications 2021; https://www.nature.com/articles/s41467-021-21247-8

#neuroblastom #tumor #kinder #therapie #telomere #krebszellen # #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Immunologie Molekulare Medizin Onkologie Wissenschaft

Individuelle Krebstherapien gegen Chemokinrezeptoren

CXCR4 ist ein wichtiger Oberflächenrezeptor auf Immun- und Krebszellen. Wenn dieser Chemokinrezeptor in großer Zahl auf Krebszellen zu finden ist, sorgt er unter anderem dafür, dass diese wandern und Metastasen bilden können. Auch bei jeder Entzündung ist CXCR4 mit von der Partie. Der Entzündungsherd setzt Botenstoffe aus der Klasse der Chemokine frei. Diese sorgen in den Lymphknoten dafür, dass Immunzellen sehr viele CXCR4-Antennen ausbilden, sodass Immunzellen den Entzündungsherd finden und dahin wandern können.

Der molekulare Rezeptor hat in den vergangenen Jahren für eine hitzige Debatte unter Experten gesorgt, weil sein Beziehungsstatus Rätsel aufgab. Tritt er als Single auf oder doch als Paar? Die Antwort liefern Untersuchungen des Forscherteams um Ali Isbilir des Max-Delbrück-Centrums für Molekulare Medizin. Der Rezeptor liebt es nämlich unverbindlich: er liegt mal als Single (Monomer), mal als Paar (Dimer) vor.

Wichtig ist diese Erkenntnis nicht nur für die Grundlagenforschung, sondern auch für die Pharmabranche. So konnten die Forscher zeigen, dass bestimmte Arzneien, die als CXCR4-Blocker wirken, eine Paarbildung unterdrücken können. Man nimmt an, dass die CXCR4-Paare schlecht für die Gesundheit sind. Dank einer neu entwickelten Fluoreszenzmethode können nun lebende Krebszellen direkt untersucht werden, so dass CXCR4-Blocker für Paare und Singles eingesetzt und geprüft werden kann, welche wirksamer gegen Tumore sind. So könnten etwa spezifischere Krebsmedikamente mit weniger Nebenwirkungen entwickelt und Krebstherapien individuell und so wirksam als möglich zusammengestellt werden.

Referenz:
MDC Berlin; Helmholtz Gemeinschaft

Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists, PNAS 2021, https://www.pnas.org/content/117/46/29144
Determination of G-protein-coupled receptor oligomerization by molecular brightness analyses in single cells; Nature Protocols 2021, https://www.nature.com/articles/s41596-020-00458-1

#krebs #krebstherapie #personalisiertemedizin #chemokin #rezeptor #onkologie #immunologie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Biotechnologie Hämatologie Immunologie Molekulare Medizin Wissenschaft

Mit „Hemibodies“ gegen das Multiple Myelom

Eine der Hürden bei der Therapie des Multiplen Myeloms, einer bösartigen Erkrankung des Knochenmarks, ist die Unterscheidung zwischen den Tumor- und den gesunden Zellen des Körpers. Diese „Unschärfe“ kann bei der Behandlung von Patienten, die an dieser Krebserkrankung leiden, drastische Folgen haben: Es kann zu teils schweren, mitunter lebensbedrohlichen Nebenwirkungen kommen. Zur Lösung dieser Misere wurden Hemibodies entwickelt.

Diese Antigen-Fragmente sind sehr spezifisch und binden an bestimmten Oberflächenfragmenten von Tumorzellen. Das besondere Prinzip dieser neuen Immuntherapie besteht darin, dass sich ihre Wirkung erst dann entfaltet, wenn zwei Hemibodies auf der Oberfläche von Tumorzellen zu einer funktionalen Einheit zusammenfinden. In der Behandlung des multiplen Myeloms wurden zwei bestimmte Antigene (SLAMF7, CD38) als Zielmoleküle für die Hemibodies ausgewählt. Diese kommen beide häufig auf der Oberfläche von Myelom-Zellen vor. Jedes dieser „Targets“ für sich alleine genommen ist allerdings nicht sonderlich spezifisch, sie finden sich auf vielen Zellen des Körpers. In Kombination sind sie jedoch hochspezifisch für die Tumorzellen. Werden beide Antikörper-Fragmente injiziert, binden sie sich getrennt ans Zielmolekül, finden aber durch die räumliche Nachbarschaft zusammen. Erst dann sind sie in der Lage, T-Zellen festzuhalten und zu aktivieren, so dass Krebszellen gezielt zerstört werden können.

Sowohl im Reagenzglas als auch im Tiermodell zeigt sich, dass durch die neue Methode schwere Nebenwirkungen zuverlässig vermieden werden können, sagt Untersuchungsleiterin Maria Geis, Universität Würzburg. Mitautor Thomas Bumm ergänzt: „Unter dem Strich ist damit der Weg frei, Hemibodies zu einer effektiven und hochspezifischen Immuntherapie des Multiplen Myeloms weiterzuentwickeln.“

Referenzen:
Universität Würzburg
Combinatorial targeting of multiple myeloma by complementing T cell engaging antibody fragments. Commun Biol 2021; 4:44;  https://www.nature.com/articles/s42003-020-01558-0

#multiplesmyelom #lymphom #hemibodies #antikörper #immuntherapie #krebs #medizin #medimpressions

Fotocredit: Canva

Kategorien
Molekulare Medizin Neurologie Onkologie Wissenschaft

Neuer Mechanismus schützt vor Krebs und Epilepsie

Das Signalprotein MTOR (Mechanistic Target of Rapamycin) ist ein Sensor für Nährstoffe wie Aminosäuren und Zucker. Wenn genügend Nährstoffe zur Verfügung stehen, kurbelt MTOR den Stoffwechsel an. Fehler in seiner Aktivierung führen jedoch zu ernsten Krankheiten wie Krebserkrankungen, die mit übermäßiger Stoffwechselaktivität, Zellwachstum und -ausbreitung einhergehen. Auch Fehlentwicklungen des Nervensystems, die zu Schwierigkeiten in der Reizverarbeitung, Verhaltensstörungen und Epilepsie führen, können die Folge sein, wenn MTOR fehlgeschaltet ist.

Um Fehler in der Signalverarbeitung zu verhindern, kontrolliert die Zelle seine Aktivität sehr genau. Dies geschieht durch Proteinhemmer, wie dem TSC Komplex. Dieser sitzt gemeinsam mit MTOR an kleinen Strukturen in der Zelle, den sogenannten Lysosomen und hält ihn in Schach.

Forscherteams der Universität Innsbruck und des DKFZ erforschten nun, auf welche Weise der TSC Komplex an Lysosomen bindet. Sie entdeckten, dass die G3BP Proteine (Ras GTPase-activating protein-binding protein) zusammen mit dem TSC Komplex an Lysosomen sitzen. Dort bilden die G3BP Proteine einen Anker, der dafür sorgt, dass der TSC Komplex an die Lysosomen binden kann. Diese Ankerfunktion spielt in Brustkrebszellen eine entscheidende Rolle. Ist die Menge von G3BP Proteinen vermindert, so führt dies zu einer erhöhten MTOR Aktivität und steigert die Ausbreitung der KrebszellenG3BP-Eiweißstoffe könnten daher Marker sein, um personalisierte Therapien zu entwickeln und die Effizienz von Medikamenten, die MTOR hemmen, zu verbessern.

Im Zebrafisch beobachteten die Forschenden Störungen der Gehirnentwicklung, ähnlich einer Epilepsie beim Menschen, wenn G3BP fehlt. Man hofft deshalb, dass Patienten mit neurologischen Erkrankungen, bei denen die G3BP Proteine fehlerhaft sind, ebenfalls von MTOR-gerichteten Wirkstoffen profitieren können.

Referenzen:
Universität Innsbruck; Deutsches Krebsforschungszentrum Heidelberg
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling; Cell 2021; https://doi.org/10.1016/j.cell.2020.12.024

#krebs #epilepsie #mtor #suppressor #wirkstoffe #therapie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Genetik Infektiologie Molekulare Medizin Virologie Wissenschaft

Covid-19: Warum Remdesivir nur beschränkt wirkt

Remdesivir ist das erste Medikament gegen Covid-19, das unter Auflagen in Europa zugelassen wurde. Der Wirkstoff soll die rasante Vermehrung des SARS-CoV-2-Erregers in menschlichen Zellen unterdrücken, indem er die virale Kopiermaschine, RNA-Polymerase genannt, stoppt. Forschende haben nun aufgeklärt, wie Remdesivir die virale Polymerase während des Kopierens stört, sie aber nicht vollständig hemmt.

„Nach komplizierten Untersuchungen kommen wir zu einem einfachen Schluss“, sagt Patrick Cramer vom Max-Planck-Institut Göttingen: „Remdesivir behindert zwar die Polymerase in ihrer Arbeit, aber erst mit einiger Verzögerung – und das Medikament stoppt das Enzym nicht komplett.“

„Remdesivir ähnelt in seiner Struktur RNA-Bausteinen“, erklärt Claudia Höbartner von der Universität Würzburg: „Die Polymerase lässt sich davon in die Irre führen und baut die Substanz in die wachsende RNA-Kette ein.“ Der Kopiervorgang pausiert danach genau dann, wenn sich die RNA-Kette nach Einbau von Remdesivir um drei weitere RNA-Bausteine verlängert hat. Einen vierten Baustein lässt die Polymerase nicht mehr zu. Allerdings, und das ist das Problem, blockiert Remdesivir die RNA-Produktion nicht komplett. Oft arbeitet die Polymerase nach einer Fehlerkorrektur auch weiter.“

Nachdem jetzt herausgefunden wurde, wie Remdesivir die Corona-Polymerase hemmt, wird daran gearbeitet, die Substanz und ihre Wirkung zu verbessern. „Darüber hinaus wollen wir nach neuen Substanzen fahnden, die die virale Kopiermaschine stoppen“, so Cramer: „Die jetzt angelaufenen Impfungen sind essenziell, um die Pandemie unter Kontrolle zu bringen. Aber wir müssen weiterhin auch wirksame Medikamente entwickeln, die im Fall von Infektionen den Krankheitsverlauf von Covid-19 mildern.“


Referenzen:
MPI für biophysikalische Chemie, Göttingen; Universität Würzburg
Mechanism of SARS-CoV-2 polymerase inhibition by remdesivir, Nature Comm 12, 279 (2021), https://www.nature.com/articles/s41467-020-20542-0

#rna #remdesivir #covid19 #corona #wirkstoffe #polymerase #therapie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Molekulare Medizin Wissenschaft

Spezifisches Steuerungsmolekül in Blutplättchen entdeckt

Blutplättchen (Thrombozyten) werden durch Kalzium aktiviert und tragen zur Blutstillung und zum Wundverschluss bei. Allerdings kann eine fehlgeleitete Aktivierung zu akut lebensbedrohlichen Ereignissen wie etwa Thrombosen, Herzinfarkten oder Schlaganfällen führen.

Forscher der Universität Würzburg konnten in einer aktuellen Studie das bislang weitgehend unbekannte Molekül namens bridging integrator 2 (BIN2) identifizieren, welches bei der Aktivierung der Blutplättchen eine zentrale Rolle spielt. Bisher war vor allem das Molekül stromal interaction molecule 1 (STIM1) als essentieller Baustein bei der Regelung von Kalziumsignalen bekannt.

Das Besondere an BIN2 ist, dass es nicht wie STIM1, in vielen anderen Zellen, sondern sehr spezifisch in Blutplättchen vorkommt, was eine zielgenaue Ansteuerung von Thrombozyten ermöglicht, ohne die Funktionen in anderen Zellen zu stören. Die Forscher stellten darüber hinaus fest, dass Mäuse ohne BIN2 stark reduzierte Kalziumsignale in den Thrombozyten aufweisen und dadurch vor arterieller Thrombose und schweren Verläufen des Schlaganfalls geschützt sind. Diese Erkenntnisse liefern wichtige Hinweise auf mögliche Ansatzpunkte für die Medikamentenentwicklung gegen Thrombosen, Herzinfarkte und Schlaganfälle.

Referenzen:
Universität Würzburg
https://www.uni-wuerzburg.de/rvz/neuigkeiten/single/news/spezifisches-steuerungsmolekuel-in-blutplaettchen-identifiziert/
Originalpublikation: The Journal of Clinical Investigation, https://doi.org/10.1172/JCI136457

#blutplättchen #thrombozyten #kalzium #bin2 #STIM1 #steuerungsmolekül #schlaganfall #thrombose #herzinfarkt #uniwürzburg #medizin #medimpressions

Fotocredit: Canva

Kategorien
Hämatologie Molekulare Medizin Onkologie Wissenschaft

Neue Medikamente in Sicht: Molecular Glue Degraders

„Molecular Glue Degraders“ sind eine immer mehr ins Zentrum der Aufmerksamkeit rückende, bislang aber wenig erforschte Klasse kleiner Wirkstoffe, welche den Abbau von Proteinen induzieren (targeted protein degradation, TPD), die gemeinhin als medikamentös inert gelten. Degrader bewirken eine Neuprogrammierung des zellulären Proteinqualitätskontrollsystems, der sogenannten E3-Ubiquitin-Ligase, die schädliche Proteine erkennt und markiert, damit diese von der zellulären Müllabfuhr abgebaut werden können.

Forscher am CeMM, dem Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften, haben nun eine Strategie beschrieben, welche erstmals die rationale und hochgradig skalierbare Entdeckung von neuen Molecular Glue Degraders ermöglicht.

Die Wissenschaftler entwickelten zelluläre Systeme mit stark eingeschränkter E3-Aktivität, um gezielt potenzielle Molecular Glue Degraders zu ermitteln. Gesucht wurde speziell nach Degradern, die das Wachstum von Blutkrebszellen unterbinden. Um die aussichtsreichsten Wirkstoffe zu charakterisieren, integrierten sie funktionelle Genomik mit Proteomik. Dies führte interessanterweise zur Entdeckung neuer Molecular Glues, die den Abbau des Proteins Cyclin-K induzieren, das in verschiedenen Krebsarten eine wesentliche Rolle spielt. Dieser molekulare Wirkmechanismus wurde bisher noch nie therapeutisch verwendet.

Georg Winter, Principal Investigator der Studie meinte dazu: „Das ist das erste Kapitel von vielen – wir werden eine Revolution der Art und Weise erleben, wie Forscher therapeutische Strategien für bislang unheilbare Erkrankungen planen und ausführen.“

Referenzen:
CeMM https://cemm.at/news/
Rational discovery of molecular glue degraders via scalable chemical profiling; 3.8.2020; Nature Chemical Biology;
https://doi.org/10.1038/s41589-020-0594-x

#mgd #tpd #degrader #e3s #cemm #leukämie #proteomik #cyclink #medizin #medimpressions

Fotocredit: Canva