Kategorien
Neurologie Pädiatrie Wissenschaft

Sport unterstützt kognitive Entwicklung von Frühgeborenen

Ein zu früher Start ins Leben kann auch im Teenageralter noch Probleme bereiten, wobei sich kognitive Einschränkungen nach wenigen Jahren häufig auswachsen. Kinder, die bereits vor der 32. Schwangerschaftswoche geboren wurden, zeigen allerdings selbst beim Übergang zum Teenageralter noch Unterschiede: sie weisen eine schwächere Impulskontrolle auf. Dies kann zu Nachteilen in der schulischen Leistung führen und hängt mit Verhaltensauffälligkeiten und einer größeren Anfälligkeit für Suchterkrankungen zusammen. Ein schweizerisches Forschungsteam entdeckte jetzt aber, dass frühgeborene Kinder, die sehr gut entwickelte motorische Fertigkeiten hatten, den termingeborenen Kindern in Sachen Impulskontrolle praktisch in nichts nachstanden.

Sie verglichen eine Gruppe von 54 sehr frühgeborenen Kindern im Alter von 9 bis 13 Jahren mit einer Kontrollgruppe gleichaltriger termingeborener Kinder und ließen sie einen sogenannten „Go/NoGo“-Test durchführen, bei dem die Probanden auf ein Signal hin schnellstmöglich einen Knopf drücken müssen, bei einem anderen Signal jedoch nicht. Der Vergleich zeigte, dass die frühgeborenen Kinder durch veränderte Aufmerksamkeitsprozesse den Bewegungsimpuls schwerer unterdrücken konnten.Weitere Untersuchung belegten jedoch auch, dass eine Zunahme bei den motorischen Fertigkeiten, die Einschränkungen bei der Impulskontrolle ausgleichen können.

Die Forscher schließen aus den Ergebnissen, dass ein gezieltes Training der motorischen Geschicklichkeit auch die kognitiven Einschränkungen reduzieren könnte. Insbesondere bei jüngeren Kindern ist die Entwicklung der motorischen und der kognitiven Fähigkeiten eng verknüpft. Das Zeitfenster von 9 bis 13 Jahren könnte daher ein vielversprechender Zeitraum sein, um kognitive Einschränkungen bei sehr frühgeborenen Kindern auszugleichen.

Referenz:
Universität Basel
Very preterm birth and cognitive control: The mediating roles of motor skills and physical fitness, Developmental Cognitive Neuroscience 2021, Doi: 10.1016/j.dcn.2021.100956

#frühgeborene #frühchen #impulskontrolle #bewegung #sport #kognitiveeinschraenkung #paediatrie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Diagnostik Interne Medizin Neurologie Neurowissenschaften Wissenschaft

Blutsenkung erkennt seltene neurodegenerative Erkrankungen

Mit einigen Tausend Betroffenen weltweit gehören die Chorea-Akanthozytose und das McLeod-Syndrom zur Gruppe der Neuroakanthozytose-Syndrome. Die Betroffenen leiden an Krampfanfällen, haben Schwierigkeiten beim Essen oder entwickeln Störungen wie unwillkürliche abrupte Bewegungen, die Extremitäten, aber auch Gesicht und Körper betreffen können und die Patienten unruhig erscheinen lässt. Bei diesen Erkrankungen, ausgelöst durch einen Gendefekt, verformen sich die roten Blutkörperchen stachelförmig und lösen in Folge neurologische Probleme aus.

Die Diagnose ist aufwändig, da die Krankheiten meist mit einer Gen-Analyse festgestellt werden. Da diese auch extrem selten sind und sehr unterschiedliche Symptome haben, werden sie oft erst sehr spät diagnostiziert. Der Biophysiker Lars Kaestner und sein Team haben nun eine sehr einfache Methode entdeckt, die eine flächendeckende Untersuchung erlauben würde: die Blutsenkung. Eine Methode die schon seit Jahrtausenden bekannt ist.

Bereits in der Antike war bekannt, dass rote Blutkörperchen in einem Röhrchen nach unten absinken. Bei einer Entzündung tun sie das schneller. Bei den Neuroakanthozytose-Syndromen haben Kaestner und sein Team nun herausgefunden, dass die Blutsenkung extrem langsam vonstatten geht, „also genau umgekehrt wie in den früheren Fällen, die man bei Entzündungen beobachten konnte“. Dabei gibt es nach ihren Beobachtungen einen recht klar festgelegten Zeitpunkt von zwei Stunden, nach dem sich ein klarer Unterschied zwischen Neuroakanthozytose-Patienten und gesunden Probanden zeigt. „Es ist keine hundertprozentig sichere Diagnosemethode,“ schränkt Kaestner ein, „aber damit haben Mediziner, die diese seltenen Krankheiten behandeln, eine sehr einfache und günstige Methode an der Hand, um diese Krankheiten flächendeckend zu testen.“

Referenz:
Universität des Saarlandes
Acanthocyte sedimentation rate as a diagnostic biomarker for neuroacanthocytosis syndromes: experimental evidence and physical justification, cells 2021; https://www.mdpi.com/2073-4409/10/4/788


#neurologie #neurodegenerativeerkrankung #neuroakanthozytose #blutsenkung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Allgemeinmedizin Neurologie Psychologie Wissenschaft

Verschwörungstheoretiker leiden nicht unbedingt an einer Denkverzerrung

Verschwörungstheorien scheinen im Laufe der Covid-19-Pandemie an Beliebtheit zu gewinnen. Doch wie stark stimmen Menschen ihnen tatsächlich zu, und wie hängt das mit Denkverzerrungen zusammen? Ein Forschungsteam der Universität Basel hat dies anhand einer repräsentativen anonymen Online-Umfrage mit über 1600 Personen in der deutschsprachigen Schweiz und Deutschland untersucht.

Im Durchschnitt stimmten knapp 10 Prozent aller Befragten einer Verschwörungsaussage stark, weitere 20 Prozent wenig oder mäßig und ungefähr 70 Prozent gar nicht zu. Den größten Anklang fanden Aussagen, die nahelegten, dass das Virus menschengemacht oder die offizielle Erklärung zu der Ursache des Virus anzuzweifeln sei.

Teilnehmende, die stärker zustimmten, waren im Durchschnitt jünger, gestresster und berichteten über mehr Paranoia-ähnliche Erfahrungen, wiesen eine politisch extremere Haltung sowie ein geringeres Bildungsniveau auf. Die Zustimmungswerte unterschieden sich nicht zwischen Geschlechtern. Die Forschungsergebnisse zeigen auch, dass die Impfakzeptanz in der Schweiz geringer ist als in anderen westeuropäischen Ländern.

Mit der Zustimmung zu Verschwörungstheorien gingen Besonderheiten in Denkprozessen einher. So wurden Schlussfolgerungen vorschneller und unter größerer Unsicherheit getroffen. Dabei zeigte sich aber, dass nicht alle Befürworter so denken, eine Untergruppe der Befragten zog ihre Schlussfolgerungen eher vorsichtig, analytisch und adaptiv. Ergebnisse, die die Forscher überraschten. Fazit der Untersucher: „Dies mahnt einerseits zur Vorsicht bei Pauschalisierungen über die Anhängerschaft von Verschwörungstheorien, andererseits birgt es aus Forschungsperspektive auch das Potenzial, in Zukunft die kognitiven Mechanismen von Verschwörungstheorien noch genauer zu untersuchen.“

Referenz:
Universität Basel
Coronavirus conspiracy beliefs in the German-speaking general population: endorsement rates and links to reasoning biases and paranoia, Psychological Medicine (2021), doi: 10.1017/ S0033291721001124

#verschwörungstheorie #konspiration #covid #pandemie #denkverzerrung #denkprozess #bildung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Epigenetik Genetik Molekulare Medizin Neurologie Onkologie Personalisierte Medizin Schmerzmedizin Wissenschaft

Mittels Gentherapie gegen Schmerzen?

Weltweit leiden Millionen Menschen an chronischen Schmerzen, denen nur noch mit Opioiden geholfen werden kann. Diese Schmerzmittel können jedoch gravierende Nebenwirkungen haben: Sie machen süchtig und fördern im schlimmsten Fall sogar das Schmerzgedächtnis.

Geht es nach den Ergebnissen einer amerikanischen Studie, könnte Schmerzpatienten künftig mittels Gentherapie geholfen werden. In ihrem Versuch blockierten die Forscher mithilfe der Genschere CRISPR/Cas9 vorübergehend ein Schmerzgen bei Mäusen. Dies dämpfte das Schmerzempfinden und sorgte für eine langanhaltende Linderung der Beschwerden. Blockiert wurde dabei eine seltene Mutation (NaV1.7), die dazu führt, dass Betroffene keinen Schmerz empfinden können. „Indem wir auf dieses Gen zielen, verändern wir den Schmerz-Phänotyp,“ so die Untersuchungsleiterin Ana Moreno von der University of California. Von Vorteil ist dabei, dass das Gen nur am Schmerz selbst beteiligt ist. Die Manipulation zeigte keine Auswirkungen auf sonstige sensorische und motorische Fähigkeiten.
Menschen mit einer entsprechenden Mutation, fehlt Schmerz als wichtige Warnfunktion des Körpers. Um diese wichtige Funktion jederzeit wieder herstellen zu können, wurde daher auf eine reversible Variante gesetzt, so dass das Schmerzempfinden bei Bedarf auch wieder „eingeschalten“ werden kann.

Die gleichen Ergebnisse erzielten die Forscher, wenn sie das entsprechende Gen nicht mit der Genschere blockierten, sondern mit einer älteren Gen-Editing-Technik, bei der sogenannte Zinkfingerproteine dazu eingesetzt werden, um die Ablesung der Gene zu blockieren.
Im nächsten Schritt sollen beide Ansätze nun für einen klinischen Einsatz am Menschen – etwa bei Krebserkrankungen, Arthritis oder Ischias – optimiert werden.

Referenzen:
University of California, San Diego
Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice; Science Translational Medicine 2021;  https://stm.sciencemag.org/content/13/584/eaay9056

#schmerz #schmerzgen #gentherapie #epigenetik #schmerzblockade #genediting #crispr #medizin #medimpressions

Fotocredit: Canva

Kategorien
Leben Neurologie Neurowissenschaften Wissenschaft

Ein gutes Gedächtnis lässt sich antrainieren

Bereits ein 30-minütiges tägliches Üben über sechs Wochen kann die Abläufe im Gehirn verändern und das Langzeitgedächtnis verbessern. Die Methode (Mnemotechnik) selbst ist im wahrsten Sinne des Wortes antik und wird auch heute noch von „Gedächtnissportlern“ bei Wettbewerben im Auswendiglernen angewandt.
Die Idee dahinter ist simpel: Denken Sie an einen vertrauten Ort („Gedächtnispalast“) und legen Sie z. B. Gegenstände ihrer Einkaufsliste gedanklich entlang eines Weges ab. Stellen Sie etwa die Erbsen neben die Couch, die Nudeln neben die Tür usw. Im Supermarkt gehen Sie den Weg in Gedanken nach und schon „sehen“ Sie, was Sie brauchen.

Wiener ForscherInnen haben sich Abläufe und Langzeitfolgen mittels Magnetresonanz genauer angesehen und Gedächtnisportler mit Menschen verglichen, die diese Technik nicht kannten bzw. mit Personen, die ein strenges sechswöchiges Gedächtnistraining absolvieren mussten.

„Grundsätzlich konnten wir feststellen, dass die Methode zu einer effizienteren Verarbeitung in Gehirnregionen geführt hat, die mit dem Gedächtnis und räumlicher Orientierung im Zusammenhang stehen“, so Isabella Wagner, Erstautorin der Studie. Bei geübten Gedächtnissportlern ließ sich in den beteiligten Hirnregionen weniger Aktivität nachweisen. Wagner: „Ein Gehirn, das in Übung ist, kann mit weniger Aktivierung eine bessere Leistung erbringen.“ Dies zeigte sich auch bei den Teilnehmern, die sich die Technik neu aneigneten.
Zudem ergab sich ein anhaltender Effekt: Vier Monate nach dem Training erinnerten sich diese Personen an deutlich mehr Inhalte, als die Teilnehmer aus Vergleichsgruppen. Mit der Durchführung der Übungen kommt es offenbar zu einer besseren Vernetzung zwischen  einzelnen Hirnregionen.

Referenz:
Universität Wien, Radboud University, NL
Durable memories and efficient neural coding through mnemonic training using the method of loci, ScienceAdvances 2021; https://advances.sciencemag.org/content/7/10/eabc7606/tab-article-info#

#gedaechtnis #mnemotechnik #gehirn #mnr #gehirnaktivitaet #langzeiteffekt #training #medizin #medimpressions

Fotocredit: Canva

Kategorien
Molekulare Medizin Neurologie Pädiatrie Wissenschaft

Neuroblastom: Welcher Faktor begünstigt Rückfälle?

Neuroblastome sind nach Hirntumoren die häufigsten soliden Tumoren bei Kindern und entstehen aus unreifen Vorläuferzellen des Nervensystems. In einigen Fällen bilden sich Neuroblastome ohne jegliche Therapie komplett zurück. Bei etwa der Hälfte der Patienten kann jedoch auch eine hochintensive Therapie das Wachstum nicht verhindern.

Bösartige Neuroblastome nutzen einen Trick, um unendlich teilungsaktiv zu bleiben: Sie verlängern ihre Chromosomenenden (Telomere), so dass die Zellen quasi „unsterblich“ werden. Auf molekularer Ebene machen Krebszellen das auf zwei Wegen, sie überaktivieren das Enzym Telomerase oder sie verlängern die Chromosomenenden durch Neuanordnung ihrer Telomerabschnitte (alternativer Mechanismus). In beiden Fällen haben die jungen Patienten eine schlechte Prognose.

Das bestätigten auch die Daten von 760 Neuroblastom-Patienten einer eben publizierten Studie. Sie zeigt, dass bei fast der Hälfte der Patienten nicht die Überaktivierung der Telomerase, sondern der alternative Mechanismus für die Telomerverlängerung verantwortlich ist. Die Wissenschaftler untersuchten auch erstmals, welche molekularen Prozesse diesen speziellen Verlängerungsmechanismus begünstigen.

Die Erkenntnisse daraus könnte man nutzen, um bessere Therapien zu entwickeln. Bisher werden die jungen Patienten alle mit den gleichen Chemotherapie-Protokollen behandelt. Diese Therapien greifen vor allem schnell wachsende Krebszellen an. Krebszellen mit dem alternativen Mechanismus wachsen aber eher langsam, sind extrem widerstandsfähig und kehren wieder. Im nächsten Schritt wird nun daran gearbeitet, eine spezifische Therapie für diese Tumoren zu entwickeln, die vielleicht auch bei anderen Krebsarten, die diesen Telomer-Verlängerungsmechanismus nutzen, zum Einsatz kommen könnte.

Referenz:
DKFZ, KiTZ, Heidelberg; Universität HD
Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome; Nature Communications 2021; https://www.nature.com/articles/s41467-021-21247-8

#neuroblastom #tumor #kinder #therapie #telomere #krebszellen # #medizin #medimpressions

Fotocredit: Canva

Kategorien
Angiologie Geriatrie Hämatologie Interne Medizin Kardiologie Neurologie Rheumatologie Wissenschaft

Synthetische Peptide könnten Atherosklerose aufhalten

Forschung der letzten 20 Jahre hat gezeigt, dass Atherosklerose durch Entzündungsprozesse in der arteriellen Gefäßwand entsteht. Diese so genannte vaskuläre Entzündung wird durch Botenstoffe, Zytokine und Chemokine, vermittelt. Die Entwicklung von entsprechenden entzündungshemmenden Therapeutika für diese Krankheit hat sich jedoch trotz vielversprechender jüngerer Studien als schwierig herausgestellt.

Bisherige gegen Botenstoffe gerichtete Therapiestrategien bei Atherosklerose, Rheumatoider Arthritis und anderen Entzündungskrankheiten setzen vor allem auf Antikörper und Medikamente auf Basis kleiner Moleküle. Eine Münchner Forschungsgruppe hat nun kurze Aminosäureketten synthetisch hergestellt, so genannte Peptide, die wie ein Chemokinrezeptor funktionieren. Das heisst, sie ahmen bestimmte Chemokinrezeptoren nach und sind in der Lage, genau die Chemokinmechanismen selektiv zu hemmen, die die Atherosklerose fördern. Hingegen werden Chemokinmechanismen, die andere physiologisch wichtige Prozesse im Körper steuern, nicht gehemmt.
„Die hier entwickelten Mini-CXCR4-Mimetika können selektiv zwischen zwei Botenstoffen eines Rezeptors, in diesem Fall dem atypischen Chemokin MIF und dem klassischen Chemokin CXCL12, unterscheiden und so spezifisch die Wirkungen auf die Atherosklerose hemmen“, erklärt Studienleiterin Aphrodite Kapurniotu von der Technischen Universität München.

„Aktuell konnten wir unseren Ansatz zwar nur im Tiermodell bestätigen, aber eine zukünftige klinische Anwendung scheint möglich, zumal Peptidtherapeutika deutlich kostengünstiger sind als Antikörper“, so Mitautor Jürgen Bernhagen, LMU Klinikum München. Plus, das neue molekulare Konzept könnte auch therapeutisches Potenzial für andere entzündliche Krankheiten haben.

Referenz:
TUM
Desingned CXR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting; Nature Communications, 11,5981 (2020); https://www.nature.com/articles/s41467-020-19764-z

#atherosklerose #entzuendung #arterienverkalkung #arterien #therapie #chemokine #synthetischepeptide #medizin #medimpressions

Fotocredit: Canva

Kategorien
Immunologie Neurologie Wissenschaft

Impfen gegen Multiple Sklerose?

Eine aktuelle Studie zieht gerade viel Aufmerksamkeit auf sich, denn wenige Wochen nach der Einführung der ersten mRNA-basierten Corona-Impfstoffe wird von einer mRNA-Impfung gegen Multiple Sklerose (MS) berichtet.

Anders als bei der Corona-Impfung soll aber nicht das fremde Antigen bekämpft werden, sondern das körpereigene Immunsystem wieder an entzündungsauslösende Proteine (Autoantige gegen körpereigene Strukturen) gewöhnt werden. Das Prinzip ist vergleichbar mit der Desensibilisierung gegen Allergien (z. B. bei Pollenallergikern). Dabei wird durch eine gezielte Zufuhr des auslösenden Stoffes die immunologische Überempfindlichkeit abgebaut, das Immunsystems lernt, das Allergen wieder zu tolerieren.

Forschern ist es an einem MS-Mausmodell gelungen, durch die kontrollierte Zufuhr des auslösenden Autoantigens (ein Myelinprotein) die autoimmune Gehirn- und Rückenmarksentzündung (Enzephalomyelitis) zu verhindern bzw. sogar rückgängig zu machen. Im Ergebnis konnte in mehreren MS-Mausmodellen die Erkrankung erfolgreich unterdrückt und eine Demyelinisierung (Angriff auf die Isolierschicht der Nervenfasern) verhindert werden; erkrankte Tiere erholten sich.

Dennoch handelt es sich nicht um eine greifbare Therapieoption, die am Menschen schnell umgesetzt werden kann. Die Entwicklung mit dem Ziel, das Immunsystem „toleranter“ zu machen, ist komplexer als der Ansatz, das Immunsystem gegenüber einem Krankheitserreger auf Angriff zu trimmen. Aber die Entwicklung dieses Grundprinzips belegt zumindest das hohe Innovationspotenzial dieses Forschungszweigs und könnte ein erster wichtiger Schritt für die Entwicklung einer zielgerichteten Therapie sein.

Referenz:
Universität Mainz
Pressemeldung Deutsche Gesellschaft f. Neurologie: Erste tierexperimentelle Daten zur mRNA-Impfung gegen Multiple Sklerose; A noninflammatory mRNA vaccine for treatment of experimental autoimmune encepha-lomyelitis, Science 2021; 371: 145–153, https://science.sciencemag.org/content/371/6525/145.editor-summary

#multiplesklerose #ms #impfung #desensibilisierung #immunsystem #mRNA #behandlung #medizin #medimpressions

Fotocredit: Canva

Kategorien
Molekulare Medizin Neurologie Onkologie Wissenschaft

Neuer Mechanismus schützt vor Krebs und Epilepsie

Das Signalprotein MTOR (Mechanistic Target of Rapamycin) ist ein Sensor für Nährstoffe wie Aminosäuren und Zucker. Wenn genügend Nährstoffe zur Verfügung stehen, kurbelt MTOR den Stoffwechsel an. Fehler in seiner Aktivierung führen jedoch zu ernsten Krankheiten wie Krebserkrankungen, die mit übermäßiger Stoffwechselaktivität, Zellwachstum und -ausbreitung einhergehen. Auch Fehlentwicklungen des Nervensystems, die zu Schwierigkeiten in der Reizverarbeitung, Verhaltensstörungen und Epilepsie führen, können die Folge sein, wenn MTOR fehlgeschaltet ist.

Um Fehler in der Signalverarbeitung zu verhindern, kontrolliert die Zelle seine Aktivität sehr genau. Dies geschieht durch Proteinhemmer, wie dem TSC Komplex. Dieser sitzt gemeinsam mit MTOR an kleinen Strukturen in der Zelle, den sogenannten Lysosomen und hält ihn in Schach.

Forscherteams der Universität Innsbruck und des DKFZ erforschten nun, auf welche Weise der TSC Komplex an Lysosomen bindet. Sie entdeckten, dass die G3BP Proteine (Ras GTPase-activating protein-binding protein) zusammen mit dem TSC Komplex an Lysosomen sitzen. Dort bilden die G3BP Proteine einen Anker, der dafür sorgt, dass der TSC Komplex an die Lysosomen binden kann. Diese Ankerfunktion spielt in Brustkrebszellen eine entscheidende Rolle. Ist die Menge von G3BP Proteinen vermindert, so führt dies zu einer erhöhten MTOR Aktivität und steigert die Ausbreitung der KrebszellenG3BP-Eiweißstoffe könnten daher Marker sein, um personalisierte Therapien zu entwickeln und die Effizienz von Medikamenten, die MTOR hemmen, zu verbessern.

Im Zebrafisch beobachteten die Forschenden Störungen der Gehirnentwicklung, ähnlich einer Epilepsie beim Menschen, wenn G3BP fehlt. Man hofft deshalb, dass Patienten mit neurologischen Erkrankungen, bei denen die G3BP Proteine fehlerhaft sind, ebenfalls von MTOR-gerichteten Wirkstoffen profitieren können.

Referenzen:
Universität Innsbruck; Deutsches Krebsforschungszentrum Heidelberg
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling; Cell 2021; https://doi.org/10.1016/j.cell.2020.12.024

#krebs #epilepsie #mtor #suppressor #wirkstoffe #therapie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurologie Neurowissenschaften Technologie Wissenschaft

Gehirn: mehr Rechenpower und Speicherplatz als vermutet

Nervenzellen kommunizieren miteinander via Synapsen. Deren Leistung dürfte viel höher sein, als bisher vermutet, wie Neurowissenschaftler zeigen. Die Signalübertragung ist dabei umso stärker, je grösser eine Synapse ist. „Mit dieser Erkenntnis schließen wir eine zentrale Wissenslücke der Neurobiologie“, so Kevan Martin von der Universität Zürich: „zudem ist dieses Wissen entscheidend, um zu verstehen, wie Informationen durch die Schaltpläne des Gehirns fließen und somit unser Gehirn funktioniert.“

Um die Synapsenströme zwischen Nervenzellen zu messen, fertigten sie hauchdünne Schnitte eines Mausgehirns an und führten unter dem Mikroskop feine Glaselektroden in zwei benachbarte Nervenzellen der Großhirnrinde ein. Damit konnten sie eine der beiden Nervenzellen künstlich aktivieren und gleichzeitig die Stärke des resultierenden Synapsenstroms in der anderen Zelle messen. Zudem injizierten sie einen Farbstoff, um die verästelten Zellfortsätze im Lichtmikroskop dreidimensional rekonstruieren zu können.

„Damit können nun die Schaltkreise der Großhirnrinde mithilfe von Elektronenmikroskopie exakt kartografiert und deren Informationsfluss am Computer simuliert und interpretiert werden,“ erklärt Gregor Schuhknecht, ETH Zürich: „diese Arbeiten ermöglichen ein besseres Verständnis, wie das Hirn normalerweise funktioniert, und wie «Verdrahtungsdefekte» zu neurologischen Entwicklungsstörungen führen können.“

Mithilfe von mathematischen Analysen konnten die Forschenden auch zeigen, dass Synapsen komplexer sind als bisher angenommen. Sie können nicht nur ein einziges Vesikel mit Botenstoffen aussenden, wie bisher angenommen, sondern mehrere Vesikel an verschiedenen Stellen gleichzeitig. Damit lässt sich auch ihre Signalstärke dynamischer regulieren als bisher gedacht.

Referenzen:
ETH, Universität Zürich; Harvard University
Structure and function of a neocortical synapse; Nature 13.1.2021; https://www.nature.com/articles/s41586-020-03134-2

#gehirn #neurowissenschaften #verknüpfung #neuronen #nervenzellen #synapsen #medizin #medimpressions

Fotocredit: Canva