Kategorien
Neurowissenschaften Wissenschaft

Ursache der Mikrozephalie entschlüsselt

Ein Forschungsteam am IMBA (Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften) entwickelte eine bahnbrechende Organoid-Technologie, um Hunderte Gene auf einmal im Hinblick auf menschliche Gehirnkrankheiten zu untersuchen. Ein wichtiger Meilenstein war 2013 die Entwicklung von Hirnorganoiden im Labor von Jürgen Knoblich. Bislang gab es jedoch keine Möglichkeit, diese systematisch nach Genen zu durchsuchen, die für Erkrankungen des Gehirns verantwortlich sind. 

Eine neue Methode namens CRISPR-LICHT (Lineage Tracing at Cellular resolution in Heterogenous Tissue) erlaubt es Forschern erstmals, Hunderte von Mutationen in Gehirnorganoiden gleichzeitig zu erzeugen und parallel ihre Wirkung auf die Entwicklung bestimmter Zellpopulationen im Gehirn zu untersuchen. „Unser Ansatz kombiniert die Genschere CRISPR-Cas9 mit einer doppelten Barcoding-Methode, bei der wir jede Zelle im Organoid und die Zellen, von denen sie abstammt mit einer einzigartigen genetischen Adresse versehen. So erschließt sich für uns eine Art ´Zell-Stammbaum´, und wir können feststellen, welchen Ursprung die Zellen in einem Organoid haben. Durch die CRISPR-Cas9- Methode erzeugen wir nun Mutationen und untersuchen, wie sich dieser Stammbaum verändert,“ so die Forscher.

In Zusammenarbeit mit der Medizinischen Universität Wien untersuchte das Team die Mikrozephalie, eine genetische Störung, bei der Patienten schwere Entwicklungsstörungen erleiden, weil das Gehirn nicht zur richtigen Größe heranwächst. Sie stellten fest, dass ein bestimmter Signalweg in den Proteinfabriken der Zelle, dem sogenannten Endoplasmatischen Retikulum, für das gesunde Wachstum im Gehirn ausschlaggebend ist. Kommt es hier zu einem Defekt, bilden bestimmte Nervenzellen weniger Zell-Nachkommen und das Gehirn bleibt zu klein. 

Referenzen:
IMBA, Wien; A human tissue screen identifies a regulator of ER secretion as a brain size determinant, Science 29. Okt. 2020; https://science.sciencemag.org/content/early/2020/10/28/science.abb5390

#mikrozephalie #crisprlicht #gehirn #organoid #gehirnkrankheiten #endoplasmatischesreticulum #medizin #medimpressions 

Fotocredit: Canva

Kategorien
Leben Neurowissenschaften Wissenschaft

Wie das Gehirn Objekte erkennt

Um einen Stuhl oder einen Hund zu erkennen, zerlegt das Gehirn sie in einzelne Eigenschaften und setzt sie anschließend wieder zusammen. Bislang war unklar, um welche Eigenschaften es sich dabei handelt. Wissenschaftler haben diese nun identifiziert – von „bunt“ und „flauschig“ bis „wertvoll“ – und stellen fest: Es braucht lediglich 49 Merkmale, anhand derer wir beinahe jedes Ding erkennen.

Das setzt sich aus etwa der Farbe, Form und Größe zusammen, aber auch daraus, dass es „was mit Natur zu tun hat“ hat, „sich bewegen kann“, „wertvoll ist“ oder „was mit Feuer“ ist. Die Forscher testeten knapp 5.500 Teilnehmer und benutzen dazu fast 2000 Bilder, die in fast 1,5 Millionen Dreier-Kombinationen präsentiert wurden. Daraus sollten die Teilnehmer eines auswählen, das sie als unterschiedlicher wahrnehmen als die anderen beiden. In letzterem Falle war das für die einen womöglich der Koala, weil er im Gegensatz zu den anderen beiden ein Lebewesen ist oder als „nicht flach“ betrachtet wird. Für andere die Brezel, weil Türvorleger und Koala flauschig sind oder man nur die Brezel essen kann.

„Unsere Ergebnisse zeigen, wie wenige Eigenschaften es eigentlich braucht, um alle Objekte in unserer Umgebung zu charakterisieren“, sagt Martin Hebart, Erstautor dieser Studie. Ob also etwa die Muschel oder der Hund als typischeres Tier wahrgenommen wird. Im Grunde erklären wir damit die Grundprinzipien unseres Denkens, wenn es um Objekte geht.“

Die Erkenntnisse könnten auch medizinisch genutzt werden. Bislang glaubte man etwa, dass Patienten, die wegen einer Hirnschädigung bestimmte Tiere nicht identifizieren können, Lebewesen insgesamt nicht erkennen. Womöglich hat der Betroffene aber ein Defizit darin, die Eigenschaft „flauschig“ zu erkennen, die den Tieren zugrunde liegt.

Referenzen:
Max-Planck-Institut für Kognitions- und Neurowissenschaften
Revealing the multidimensional mental representations of natural objects underlying human similarity judgements; Nat Hum Behav. 2020; https://doi.org/10.1038/s41562-020-00951-3

#gehirn #erkennung #eigenschaften #denken #verhalten #neurologie #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurowissenschaften Wissenschaft

Regulator der Gehirnplastizität entdeckt

Die postnatale Entwicklung des Gehirns ist nach der Geburt durch zeitlich begrenzte, funktionsspezifische Fenster hoher Plastizität gekennzeichnet. Diese lernsensiblen Phasen treten auf, indem bestimmte Bereiche des Gehirns durch Reifungs- und Differenzierung-Prozesse weiter ausgebaut werden und somit leicht und schnell neuronale Verknüpfungen entstehen, die die Plastizität des Gehirns erhöhen. Der natürliche Spracherwerb bei Säuglingen ist das bekannteste Beispiel für so eine sensible Phase.

Die neuronale Plastizität gibt unserem Gehirn die Möglichkeit, sich das ganze Leben lang an neue Anforderungen anzupassen. Sie ist im erwachsenen Gehirn jedoch oft eingeschränkt, so dass Lernprozesse mühsamer ablaufen. Um zelluläre und molekulare Mechanismen zu identifizieren, die diese sensiblen Phasen öffnen und wieder schließen und im Zusammenhang mit dem Altern stehen, untersuchten Forscher die Plastizität der visuellen Hirnrinde (visueller Kortex) bei Mäusen.

Dabei haben sie die Rolle einer kleinen microRNA (miR-29) in diesen lernsensiblen Phasen der Plastizität aufgedeckt. Ein vorzeitiger Anstieg der miR-29-Konzentration in jungen Mäusen blockiert die kortikale Plastizität, wobei die Blockierung von miR-29 in erwachsenen Tieren eine Plastizität induziert, die typisch für jüngere sensible Phasen ist; ein Indiz dafür, dass miR-29 ein altersabhängiger Regulator der Entwicklungsplastizität ist. Die Beobachtung, dass miR29a ein Re-Modellierer ausgereifter neuronaler Netze ist, eröffnet neue, hoffnungsvolle therapeutische Perspektiven für miR-29a und andere miR-29-Familienmitglieder, um die Plastizität während des Alterns und die Regeneration von Hirnschädigungen zu fördern.

Referenzen:
Scuola Normale Superiore (SNS), Pisa; Leibniz-Institut für Alternsforschung, Jena
MiR‐29 coordinates age‐dependent plasticity brakes in the adult visual cortex. EMBO Rep (2020); https://doi.org/10.15252/embr.202050431

#gehirn #plastizität #neuronaleverknuepfung #altern #neuronen #kortex #entwicklungsplastizität #medizin #medimpressions

Fotocredit: Canva