Kategorien
Allgemeinmedizin Genetik Leben Orthopädie Wissenschaft

Steife Sehnen machen gute Sprinter

ForscherInnnen haben jetzt die zellulären Mechanismen entschlüsselt, dank denen sich Sehnen mechanischen Belastungen anpassen können. Menschen, die eine bestimmte Variante eines Schlüsselgens dieses Mechanismus tragen, können besser springen als andere. Vor ein paar Jahren schon konnte gezeigt werden, dass eine bestimmte Variante eines Ionen-Kanal-Gens mit dem Namen E756del bei Personen mit westafrikanischer Abstammung gehäuft vorkommt. Diese Genvariante schützt ihre Träger vor schweren Verläufen der Malaria. Gleichzeitig unterstützt sie die Sprungkraft dieser Personen. So könnte es sein, dass diese Genvariante teilweise erklärt, warum Athleten mit Abstammung aus Ländern, wo E756del sehr häufig ist, bei sportlichen Wettkämpfen brillieren, etwa im Sprint, im Weitsprung oder beim Basketball.

Kern des neuentdeckten Mechanismus ist ein molekularer Kraftsensor in den Zellen der Sehnen, ein sogenanntes Ionenkanal-Protein. Dieses erkennt, wenn sich die Kollagenfasern, aus denen die Sehnen bestehen, gegeneinander in Längsrichtung verschieben. Kommt es zu einer starken solchen Scherbewegung, lässt der Sensor Kalziumionen ins Innere der Sehnenzellen strömen. Dies fördert die Produktion bestimmter Enzyme, welche die Kollagenfasern miteinander verbinden. Die Sehnen verlieren dadurch an Elastizität und werden steifer und stärker. Eine Verstärkung dieses Prozesses hat Vorteile bei Sprung-betonten Sportarten, denn sie übertragen die in den Muskeln entfalteten Kräfte direkter auf die Knochen. 

Dass Wissen darüber, wie Sehnen funktionieren, dürfte auch helfen, Sehnenverletzungen in Zukunft besser therapieren zu können. Mittelfristig ist die Entwicklung von Medikamenten denkbar, die an den neu entdeckten Kraftsensor andocken, so dass Sehnen- und andere Bindegewebserkrankungen besser heilen können.

Referenz:
ETH Zürich, Universität Zürich
Shear-​stress sensing by PIEZO1 regulates tendon stiffness in rodents and influences jumping performance in humans, Nat Biomed Eng 2021; https://www.nature.com/articles/s41551-021-00716-x

#sehnen #sport #springen #ionenkanal #kalzium #mutation #genvariante #medizin #medimpressions

Fotocredit: Canva

Kategorien
Diagnostik Orthopädie Sportmedizin Wissenschaft

Risiko-Genvariante für schwache Sehnen und Bänder

Sehnen übertragen große Kräfte zwischen Muskeln und Knochen – mit einer menschlichen Achillessehne könnte man einen Kleinwagen ziehen. Ohne den Eiweißstoff „Sparc“ sind sie aber schwach entwickelt und reißen nach Belastung leicht, berichtet der Salzburger Forscher Andreas Traweger.

Gemeinsam mit einem internationalen Team untersuchte der Forscher die Achillessehnen von Mäusen ohne „Sparc“. Sie waren schwächer entwickelt als bei normalen Mäusen, hielten weniger Zugkraft am Knochenansatz aus und rissen öfter nach einem Tretmühlen-Lauf. „In unserer Studie konnten wir zeigen, dass die extrazelluläre Matrix schwächer ist, wenn dieser Eiweißstoff fehlt“, so Traweger: „Dadurch nehmen die eingebetteten Zellen auftretende Lasten wie eine Dehnung verstärkt wahr.“ Die Zellen fühlen sich demnach überbeansprucht, was bei den Sehnen Verfallserscheinungen hervorruft: Die Matrix wird samt Eiweißstoff-Fasern abgebaut und Entzündungen entstehen.

Die Forscher fanden auch heraus, dass Menschen mit Sehnen- und Bänderrissen häufig eine bestimmte Mutation im Sparc-Gen, der Vorlage des Sparc-Eiweißstoffes, haben. Sie führt dazu, dass der Eiweißstoff nicht gut in die extrazelluläre Matrix abgegeben werden kann.

Die Erkenntnisse sind in zweifacher Hinsicht klinisch relevant. Einerseits könnte man Sportler screenen, ob sie Träger dieser neu entdeckten Mutation und so einem erhöhten Risiko eines Sehnenrisses ausgesetzt sind. Andererseits finden bereits Untersuchungen im Tiermodell statt, die klären sollen, ob man durch die Gabe von Sparc-Eiweißstoff die Heilung von Sehnen begünstigen kann.

Referenz:
Paracelsus Universität Salzburg; University of Western Australia; Guangdong Academy, Uni Zürich
Science APA: Forscher fanden Risiko-Genvariante für schwache Sehnen und Bänder, 24.2.2021; Originalpublikation: Load-induced regulation of tendon homeostasis by SPARC, a genetic predisposition factor for tendon and ligament injuries, Science Tans Med 2021;
https://stm.sciencemag.org/content/13/582/eabe5738

#sehnen #baender #baenderriss #sparc #sportverletzung #achillessehne #screening #medizin #medimpressions

Fotocredit: Canva

Kategorien
Neurologie Orthopädie Technologie Wissenschaft

Neurofeedback erleichtert das Tragen von Prothesen

Obwohl die Prothesentechnik ständig Fortschritte macht, sind beinamputierte Personen nicht immer zufrieden mit ihrer Prothese. Ein häufiger Grund dafür ist, dass die Personen das Gewicht der Prothese als zu hoch empfinden. Dies, obwohl Beinprothesen tatsächlich in der Regel weniger als halb so schwer sind als natürliche Gliedmaßen. Schweizer Forschende konnten nun zeigen, dass eine Verbindung der Prothesen mit dem Nervensystem hilft, das Prothesengewicht als geringer wahrzunehmen, was der Akzeptanz der Prothesen sehr zuträglich ist.

So wurden in den vergangenen Jahren Prothesen entwickelt, welche dem Nervensystem des Trägers ein Feedback geben. Dies geschieht über in den Oberschenkel implantierte Elektroden, die mit den dort vorhandenen Beinnerven verbunden werden. Informationen von Tastsensoren unter der Fußsohle sowie von Winkelsensoren im elektronischen Prothesen-Kniegelenk werden dazu in Stromimpulse umgewandelt und an die Nerven weitergegeben.

Dem Gehirn einer oberschenkelamputierten Person wird so vorgegaukelt, dass die Beinprothese ihrem eigenen Bein ähnlich ist. In einer im letzten Jahr veröffentlichten Studie zeigte das Team bereits, das sich Träger solcher Neurofeedback-Prothesen sicherer und mit weniger Kraftanstrengung fortbewegen können.

Dass sich Neurofeedback nicht nur in einer empfunden Gewichtserleichterung bemerkbar macht, sondern sich auch positiv auf das Gehirn auswirkt, bestätigten die Wissenschaftler nun außerdem mit einer motorisch-kognitiven Aufgabe, bei der der Proband beim Gehen Wörter mit fünf Buchstaben rückwärts buchstabieren sollte. Das sensorische Feedback ermöglichte ihm nicht nur einen schnelleren Gang, sondern er schnitt auch bei der Buchstabierübung besser ab.

Referenz:
ETH Zürich
Lightening the perceived prosthesis weight with neural embodiment promoted by sensory feedback. Current Biology, 7.1.2021, https://www.sciencedirect.com/science/article/abs/pii/S0960982220317826

#beinprothese #neurofeedback #prosthetik #neurologie #sensorik #gehirn #medizin #medimpressions

Fotocredit: Canva

Kategorien
Orthopädie Wissenschaft

Sprunggelenksersatz aus dem 3D-Drucker

Erstmals in Österreich wurde einer Patientin ein individuell angepasster Sprunggelenksersatz eingesetzt. Der mittels 3D-Drucker in den USA hergestellte Ersatz soll einen schnelleren Operationsvorgang und eine bessere Passform garantieren, so Dr. Clemens Mansfield, Teamleiter der Fußchirurgie im Orthopädischen Spital Speising.

#sprunggelenk #sprunggelenksersatz #orthopädie #fußorthopädie #speising #3dddruck #medizin #medimpressions

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden